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Problem

Given:
a cooking recipe

Task:
produce 5,000 identical dishes of that recipe

Requirements:
each dish must be fresh
→ minimize time to finish each dish
→ produce one dish at a time

Utility:
Kitchtel Plentium™ Robot
I Executes hundreds of instructions

per second
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Translating Recipe Into Robot Speak
Operations in recipe:

chop vegetables
boil potatos
add salt
. . .

Instructions understood by robot:
MVFW – move forwards
RSARM – raise arm
LWARM – lower arm
. . .

Task:
Translate recipe operations into sequences of
robot instructions = instruction selection (IS)
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Ex: Select Instructions for “Slice Cucumber”
Assumptions:

Knife already picked up
Arm already at beginning of cucumber

Instruction sequence:

repeat:
SLARM slide arm
LWARM lower arm
RSARM raise arm
CHKENDCUC check if at end of cucumber
JNE repeat jump to repeat if check fails
... else continue

Tedious and error-prone to do manually!

P
ho

to
cr

ed
it:

FO
X
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Compiler

robot

instructions

input output
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Solving the Kitchen Problem

robot

instructions

1000×

translate

load into

produce
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Complex Instruction With Repetition

Trait:
Fewer instructions→ less time to produce dish

New robot:
AKD∗ Chopteron™
∗Advanced Kitchen Devices

I Special CHOP instruction
repeat:
SLARM
LWARM
RSARM
CHKENDCUC
CJMP repeat

1× CHOP

I Reduces time spent on chopping

Existing IS methods unable to select such instructions!
Resort manual selection or hand-written selection routines!
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SIMI Instructions

New robot:
Kitchtel Plentium™ with
Advanced Blade Extensions (ABX)
I Four blades on a single arm
I Controlled through SIMI∗ instructions
∗Single-Instruction-Multiple-Ingredients

repeat:
SLARMX4
LWARMX4
RSARMX4
CHKENDCUC
CJMP repeat

I Chop 4× more vegetables in same time
I Operates on a separate, sturdier workbench
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Problems of Selecting SIMI Instructions
Underutilization:

Recipe must contain plenty of chopping
Common case, however:

...
Chop a cucumber

...

...
Chop another cucumber

...

...
Chop 2× cucumbers

...

...

...

transform

(careful not
to change
outcome
of recipe)

global code motion

Interaction between instruction selection and
global code motion
Can also benefit complex instructions

Global code motion currently done separately
from instruction selection!
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Problems of Selecting SIMI Instructions
Moving ingredients:

main
sturdy

before chopping

after chopping

If time for moving ingredients < time saved by SIMI instructions:
I reduce overall dish time

else:
I increase overall dish time

Not always beneficial to use SIMI instructions

Existing IS methods typically greedy,
or do not take this overhead into account!
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Summary

Robots have complex instructions (e.g. CHOP and
SIMI instructions) to reduce time to produce dish
Existing IS methods unable to make use of them
I Representations too simplistic
I Lack integration with global code motion
I Apply greedy methods (lead to bad decisions)
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What Bearing Does This Have on Reality?

set of
operations
working on
ingredients

cooking recipe
transform into some-
thing understood by

robot

machine that
executes list of

instructions

equivalent

equivalent

equivalent

int fact(int n) {
int f = 1;
while (n > 1) {
f = f * n;
n--;

}
return f;

}

set of
operations
working on

data

computer program
transform into some-
thing understood by

code
generation

processor

Photo credit: Intel

machine that
executes list of

instructions
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Equivalent to Traditional Code Generation
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Same Problems in Traditional Code Generation

Modern processor features:
Complex instructions with control flow
(CHOP↔ SATADD, LOOP, CRC32, . . .)
SIMI instructions↔ SIMD∗ instructions

∗Single-Instruction-Multiple-Data

I Kitchtel’s ABX↔ Intel’s AVX (Advanced Vector Extensions)
I Operates on a different register set (workbench)

Moving ingredients↔ data copying

More and more features are added,
but existing IS methods unable to cope!

This problem is only going to get worse!
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2. Thesis
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6. Conclusion
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Compiler

function frontend optimizer backend assembly

compiler

IR IR

global
code mover

. . . . . .IR IR

optimizer

instruction
selector

register
allocator

instruction
schedulerIR assembly

backend
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Instruction Selection Using Graphs

int f(int a) {
int b = a * 2;
int c = a * 4;
return b + c;

}

ret

+

∗ ∗

a 2 a 4

set of
matches∗

covering

data-flow graph

ADD, MUL, MULACC, RET

i
1cost:

+

1

∗

3

∗

+

3

ret

1

set of pattern graphs

∗subgraph isomorphism problem

Problem: Select matches such
that data-flow graph is covered

at least cost (NP-hard in general)
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Contributions

Presents comprehensive and systematic survey
I examines and categorizes over four decades of research
I identifies connections between instruction selection and

other code generation problems yet to be explored

Published in:

G. Hjort Blindell. Instruction Selection:
Principles, Methods, and Applications.
Springer, 2016.
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Principles of Instruction Selection

Macro expansion
I covers single nodes
+ very simple, very fast
– very poor instruction support
– per operation (global code motion)
= very poor use of instructions

Tree covering
I covers trees of nodes
+ simple, fast (optimal cover in O(n))
– poor instruction support
– per basic block (global code motion)
= poor use of instructions
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Principles of Instruction Selection

DAG covering
I covers DAGs of nodes
+ handles complex data-flow instructions

(e.g. SIMD instructions)
– NP-hard to do optimally
– cannot model control flow
– per basic block (global code motion)
= limited use of instructions

Graph covering
I covers graphs of nodes
+ model both data and control flow
+ potential for full instruction support
+ function scope (global code motion)
– NP-hard(er) to do optimally
= good use of instructions but expensive to do
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Publication Timeline
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
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1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

MACRO
EXPANSION

TREE
COVERING

DAG
COVERING

GRAPH
COVERING
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Related Approaches Based on DAG Covering
Solved using maximal (weighted) independent sets:

Scharwaechter et. al (2007), Ahn et. al (2009),
Youn et. al (2011)

Solved using integer programming:
Wilson et. al (1994), Leupers and Marwedel (1995, –96),
Gebotys (1997), Leupers (2000), Tanaka et. al (2003),
Bednarski and Kessler et. al (2006), Eriksson et. al (2008, –12)

Solved using constraint programming:
Bashford and Leupers (1999), Martin et. al (2009, –12),
Floch et. al (2010), Beg (2013), Arslan and Kuchcinski (2014)

Common limitations:
Patterns restricted to trees or DAGs
Cannot be integrated with global code motion
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Related Approaches Based on Graph Covering

Solved using greedy heuristics:
Paleczny et. al (2001)
I Program modeled as SSA graph (only data, no control flow)
I Cannot accommodate for interaction between instruction

selection and global code motion

Solved using PBQP:
Eckstein et. al (2003), Ebner et. al (2008)
I Program modeled as SSA graph (only data, no control flow)
I Patterns limited to trees or DAGs

Buchwald and Zwinkau (2010)
I Program modeled using (lib)Firm (data + control flow)
I Operations fixed to a specific basic block
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Universal Instruction Selection

An approach that:
based on graph covering
I enables capturing of both data and control flow
I to enable uniform selection of instructions

integrates instruction selection with global code motion
I to leverage selection of complex instructions

applies combinatorial optimization method
I to accommodate the interactions between these problems
I to avoid bad decisions
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Thesis

Constraint programming is a flexible, practical, competitive, and
extensible approach to combining instruction selection, global
code motion, and block ordering∗.

flexible handle hardware architectures with rich
instruction sets

practical handle programs of sufficient complexity,
scales to medium-sized programs (up to 200 ops.)

competitive generates code of equal or better quality than
state of the art

extensible can integrate other code generation tasks

∗Not discussed here due to time constraints; see dissertation and extra material
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Contributions

Introduces:
novel program and instruction representation
I captures both data and control flow
I operations are not fixed to specific basic block

combinatorial model based on constraint programming
I integrates instruction selection and global code motion
I first of its kind

techniques to improve solving
I essential for scalability
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Approach

frontend optimizer backend

LLVM
(state-of-the-art compiler)

graph
builder

pattern set
builder

matcher modeler solver
code

emitter

function IR IR

function graph

processor
instructions

pattern set

matches constraint
model

solution instructions
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Universal Representation

Combination of two graphs:
control-flow graph
data-flow graph based on SSA

Same representation used for both programs and instructions
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Control-Flow Graph

Nodes represent basic blocks
Edges represent jumps between blocks

Example:
int fact(int n) {
entry:
int f = 1;

check:
bool b = n <= 1;
if (b) goto end;

body:
f = f * n;
n--;
goto check;

end:
return f;

}

F T

entry

check

body end
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Static Single Assignment (SSA) Form

Each variable must be
defined exactly once
Use ϕ-functions when
definition depends on
control flow
Used in virtually all
modern compilers
(simplifies many parts)

y = x? * 2x3 = ϕ(x1:A, x2:B)
y = x3 * 2

x1 = 1 x2 = -1

A B

C
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SSA Example

int fact(int n1) {
entry:
int f1 = 1;

check:
int f2 = ϕ(f1:entry, f3:body);
int n2 = ϕ(n1:entry, n3:body);
bool b = n2 <= 1;
if b goto end;

body:
int f3 = f2 * n2;
int n3 = n2 - 1;
goto head;

end:
return f2;

}

f1n1

F T

f3n3

entry

check

body end
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SSA Graph Example
int fact(int n1) {
entry:
int f1 = 1;

check:
int f2 = ϕ(f1:entry,

f3:body);
int n2 = ϕ(n1:entry,

n3:body);
bool b = n2 <= 1;
if b goto end;

body:
int f3 = f2 * n2;
int n3 = n2 - 1;
goto head;

end:
return f2;

}

n1

ϕ

n2

≤

1

−

1

1

ϕ

f2

∗
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How to Connect the Two Graphs?

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1

definition edge
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Extend the Control-Flow Graph

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1

definition edge
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Extend the SSA Graph

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1

definition edge
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Add Missing Data-Flow Edges

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1

definition edge
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How to Prevent Moves That Break Semantics?

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1

definition edge
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ϕ’s Capture Illegal Across-Block-Bound Moves

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ
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∗
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n1

1

1

1

definition edge
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Add Edges to Fix Definitions of Data

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1

definition edge
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Universal Function (UF) Graph

F T

F T

entry

br

check

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

∗

f3

n1

1

1

1

definition edge

48



Extensions

Memory Operations and Function Calls
May implicitly depend on each other (via e.g. memory)
Order must be kept when covering
Moving to another block may break program semantics

Enforced by means of state threading

49



Related Representations

Click and Paleczny (1995)
I Not all control-flow operations represented as nodes
I Not all values represented as nodes

(lib)Firm (Braun et. al 2011)
I Operations fixed to specific basic blocks
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Instruction Representation

Apply same construction method as for UF graphs
I Example: SATADD

d = s + t;
if d > MAX then d = MAX;

Both data and control flow

T
F

entry

c.br clamp

br

end

s

+

t

d1

ϕ<

MAX MAX

d2
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What Is Constraint Programming?

Method for solving combinatorial optimization problems
I First model the problem, then solve the model

Problems modeled as constraint models
I Variables – decisions to be made? x,y, z ∈ Z
I Constraints – what constitute a solution? x + y < z
I Objective function – which solution is best? maximize x

Orthogonal to variables and constraints
I Extensible by composition w ∈ Z

x = 2×w
Constraint models solved by interleaving
I Propagation – remove values in conflict with constraint
I Search – try and backtrack
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Example: Sudoku

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79 variable

Initially:
x

79
∈
{

1, 2, 3, 4, 5, 6, 7, 8, 9
}
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Row Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79x
71

x73 x
74

x75 x76

Propagate allDifferent(x
71
, 6, x

73
, x

74
, x

75
, x

76
, 2, 8, x

79
)

x
79
∈
{

1, 3, 4, 5, 7, 9

}
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Column Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79

x
19

x29

x39

Propagate allDifferent(x
19
, x

29
, x

39
, 3, 1, 6, x

79
, 5, 9)

x
79
∈
{

4, 7

}
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3× 3 Block Constraint

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

x79

x87 x88

x97

Propagate allDifferent(2, 8, x
79
, x

87
, x

88
, 5, x

97
, 7, 9)

x
79
∈
{

4

}
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After Propagation

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

4

x
79
= 4
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Full Sudoku Model
Variables (81 in total):

x
11
, . . . , x

19
, x

21
, . . . , x

29
, . . . , x

99
∈ {1, . . . , 9}

Constraints (27 in total):
I Rows:

allDifferent(x
11
, . . . , x

19
)

...
allDifferent(x

91
, . . . , x99)

I Columns:

allDifferent(x
11
, . . . , x

91
) . . . allDifferent(x

91
, . . . , x99)

I Blocks:
allDifferent(x

11
, . . . , x33)

. . .
allDifferent(x77, . . . , x99)

Instance data (puzzle):
x

11
= 5, x

32
= 9, x

56
= 3, . . .
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Search

x ∈ {1}
y ∈ {2}
z ∈ {3}

x ∈ {1}
y ∈ {2}
z ∈ {4}

x ∈ {2}
y ∈ {1}
z ∈ {3}

x ∈ {2}
y ∈ {1}
z ∈ {4}

x ∈ {1}
y ∈ {2}

z ∈ {3, 4}

x ∈ {2}
y ∈ {1}

z ∈ {3, 4}

x ∈ {1, 2}
y ∈ {1, 2}
z ∈ {3, 4}

x ∈ {1}
y ∈ {}

z ∈ {3, 4}

x 6= y 6= z

x = 1 x 6= 1

. . .

z = 3 z 6= 3 z = 3 z 6= 3

61



Overview

1. Related Work and Background

2. Thesis

3. Approach
3.1 Program Representation
3.2 Instruction Representation
3.3 Constraint Programming
3.4 Model

4. Experimental Evaluation

5. Model Extensions

6. Conclusion

62



Instance Data

Set of basic blocks in function: B
Set of operations in function: O
Set of values in function: D
Set of definition edges in function: E
Set of matches: M
Set of locations: L
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Modeling Instruction Selection

Which match is selected to cover each operation?

Every operation must be covered
Matches must not overlap∗

∗Sometimes overlaps (recomputation) are beneficial; more on this later
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Modeling Instruction Selection
Variables:

For each match m ∈M:

sel[m] ∈ {0, 1}

For each operation o ∈ O:

omatch[o] ∈M

Constraints:
Exact coverage:

∀o ∈ O, ∀m ∈ canCover(o) : omatch[o] = m⇔ sel[m] = 1
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Modeling Global Code Motion

In which block is each value produced?

No value may be used before produced
I Refine in terms of dominance
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Dominance

A block b dominates another block c if b appears on every
control-flow path from entry block to c
A block always dominates itself
Example:

entry

A

B C

D

block dominated by

entry entry
A A, entry
B B, entry, A
C C, entry, A
D D, entry
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Modeling Global Code Motion
Variables:

For each value d ∈ D:

dplace[d] ∈ B
For each operation o ∈ O:

oplace[d] ∈ B
Constraints:

Every use dominated by its definition:

∀m ∈M,∀d ∈ usedBy(m) :
sel[m]⇒ blockOf (m) ∈ dominatedBy(dplace[d])

I ϕ’s handled by refinement
Requirements enforced by definition edges:

∀d→ b ∈ E : dplace[d] = b
Connecting the dplace and oplace:
I Skipped for sake of time; see dissertation and extra material
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Modeling Data Copying

In which location is each value produced/used?

If value produced in location different from usage, select copy
Selection through copy extension
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Copy Extension

v in location A

v in location B

v1 in location A

v2 in location B

v cp

v1

v2

Requires copy instruction
Insert copy for each use of value
If location of v1 = location of v2:

cover cp using null-copy pattern (zero cost)
otherwise:

cover cp using actual copy instruction
Mechanisms for reusing copied values

70



Modeling Data Copying

Variables:
For each value d ∈ D:

loc[d] ∈ L

Constraints:
Location requirements made by matches:

∀m ∈M,∀d ∈ definedBy(m) ∪ usedBy(m) :
sel[m]⇒ loc[d] ∈ locatedIn(m, d)
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Full Model
Variables:

∀m ∈ M : sel[m] ∈ {0, 1}
∀o ∈ O : omatch[o] ∈ M, oplace[o] ∈ B

∀d ∈ D : dmatch[d] ∈ M, dplace[d] ∈ B, loc[d] ∈ L

∀p ∈ P : alt[p] ∈ D, uplace[p] ∈ B
∀o ∈ O : ocost[o] ∈ N

cost ∈ N

Constraints:
∀o ∈ O, ∀m ∈ Mo : omatch[o] = m⇔ sel[m]

∀d ∈ D, ∀m ∈ Md : dmatch[d] = m⇔ sel[m]

∀f ∈ F :
∑
m∈f

sel[m] < |f |

∀m ∈ M, ∀o
1
, o

2
∈ covers(m) : sel[m]⇒ oplace[o

1
] = oplace[o

2
]

∀m ∈ M, ∀o ∈ covers(m), ∀b ∈ entry(m) : sel[m]⇒ oplace[o] = b
∀p ∈ Pϕ : table(〈uplace[p], dplace[alt[p]]〉, R)
∀m ∈ Mϕ, ∀o ∈ covers(m), ∀p ∈ uses(m) :

sel[m]⇒ oplace[o] = uplace[p]
∀m ∈ Mϕ, ∀p ∈ uses(m) :

¬sel[m]⇒ uplace[p] = dplace[alt[p]]
∀p ∈ Pϕ : uplace[p] = min(B)

∀m ∈ M, ∀p ∈ defines(m), ∀o ∈ covers(m) :

sel[m]⇒ dplace[alt[p]] ∈ {oplace[o]} ∪ spans(m)

∀m ∈ M, ∀o ∈ O \ covers(m), ∀b ∈ consumes(m) :
sel[m]⇒ oplace[o] 6= b
∀d→ b ∈ E : dplace[d] = b

∀m ∈ M, ∀p ∈ defines(m) ∪ uses(m) :
sel[m]⇒ loc[[alt[p]]] ∈ stores(m, p)

∀m ∈ Mϕ, ∀p
1
, p

2
∈ defines(m) ∪ uses(m) :

sel[m]⇒ loc[[alt[p
1
]]] = loc[[alt[p

2
]]]

∀m ∈ M×, ∀p ∈ defines(m) : sel[m]⇔ loc[alt[p]] = lkilled

∀〈m, b, p〉 ∈ EM : sel[m]⇒ dplace[alt[p]] = b
circuit(succ[b

1
], . . . , succ[bn])

∀〈m, b〉 ∈ J : sel[m]⇒ succ[entry(m)] = b ∨(
succ[succ[entry(m)]] = b ∧ isEmpty(succ[entry(m)])

)
∀〈m, ·〉 ∈ J : sel[m]⇒ succ[entry(m)] 6= bf

∀o ∈ O : table(〈o, omatch[o], oplace[o], ocost[o]〉, C)

cost =
∑
o∈O

ocost[o]

∀b ∈ B, ∀d ∈
{
d′ o′ ∈ Oϕ,m ∈ Md′ , ∃p ∈ uses(m) :

entry(m) = {b} ∧ Dp = {d}

}
:

table(〈b, dplace[d]〉, R)

∀S ∈ 2
B
, ∀d ∈ D, ∀o ∈

{
o′ o′ ∈ Oϕ,m ∈ Mo′ , ∃p ∈ defines(m) :

spans(m) = S ∧ Dp = {d}

}
:

dplace[d] ∈ S
∀S ∈ 2

D
� ,

∀o ∈
{
o′ | o′ ∈ O,m ∈ Mo′ , ∃p ∈ uses(m) \ defines(m) : Dp = S

}
,

∃d ∈ S : loc[d] /∈ {lint, lkilled}
∀o ∈

{
o′ | o′ ∈ Oϕ,m ∈ Mo′ s.t. consumes(m) = ∅

}
,

∀d
1
∈
{
d | d ∈ dataOf(o, defines),m ∈ Mo, ∃p ∈ defines(m) : Dp = {d}

}
,

∀d
2
∈
{
d | d ∈ dataOf(o, uses),m ∈ Mo, ∃p ∈ uses(m) : Dp = {d}

}
:

table(〈dplace[d
1
], dplace[d

2
]〉, R) ∧ oplace[o] = dplace[d

1
]

.

.

.
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Objective Function

Minimize execution time
I minimize cost (duration of instruction) of selected matches

weighted by block execution frequency (given by LLVM)

[minimize code size, . . .]
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Techniques to Improve Solving

To increase propagation:
Model refinements
Implied constraints

To reduce search space:
Symmetry and dominance breaking constraints
Tightening bounds on cost variable
Presolving to remove illegal/redundant matches
Presolving to remove symmetric locations
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Overview

1. Related Work and Background

2. Thesis

3. Approach

4. Experimental Evaluation

5. Model Extensions

6. Conclusion
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Contributions

Presents experiments demonstrating approach to:
I handle architectures with rich instruction sets
I scale to medium-sized functions
I generate code equal or better quality than state of the art
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Setup

Randomly selected 20 functions from MediaBench using
k-means clustering
I Medium-size functions (50–200 LLVM operations)
I No vector or floating-point operations

Chose Hexagon 5 as target
I DSP with rich instruction set
I Part of Snapdragon platform; used in most mobile phones

Found matches using VF2∗

Modeled using MiniZinc
Solved using Chuffed
Timeout of 10 minutes
I No improvements observed after ∼5 minutes

∗Cordella et al. “An Improved Algorithm for Matching Large Graphs”. In: Proceedings of GbRPR’01, pp. 149–159. Springer, 2001.
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Impact by Approach on Code Quality

Comparing:
Estimated quality (execution time) of code produced by
LLVM 3.8
I State-of-the-art compiler
I Greedy, DAG covering-based IS

Estimated quality of code produced by approach
Expected results:

Some improvement
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Comparison: Code Quality

0 %
2 %
4 %
6 %
8 %

10 %
12 %
14 %
16 %
18 %
20 %

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gl_TexImage3DEX.

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

∗ ∗ ∗

11.1

∗ ∗ ∗ 0.61

1.23 1.72

∗ ∗ ∗ 0.701 0.744 0.842

0.173 0.091

7.84

18.1

2.39

∗ ∗ ∗ 0.647

5.72

∗ ∗ ∗ 0.453

:

Baseline: quality of code produce by LLVM
∗ ∗ ∗ means LLVM already optimal
Dots over bars means solver timeout
Geometric mean improvement: 3 %∗

Up to 18.1 % quality improvement
∗For confidence intervals, see dissertation
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Approach vs. LLVM: Case Studies

Moving loads to cheaper blocks (in most functions):

block with exec freq 5:

...
block with exec freq 10:
immediate-load
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Approach vs. LLVM: Case Studies

Move + select (in checksum):

block1:
b = add a, 1
...

block2:
y = add x, b
...
... = ... y

block1:
x += add b, 1
...

block2:

...

... = ... x
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Impact by SIMD Selection on Code Quality

Comparing:
Estimated quality of code produced when no SIMD instr.
Estimated quality of code produced with 2-way SIMD instr.

Expected results:
Some improvement
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Comparison: Code Quality

0 %

2 %

4 %

6 %

8 %

10 %

12 %

color_cmyk_to_r.

debug_print_str.

delete_contours

fill_input_buff.

free_new_ctrl

gl_read_alpha_s.

gluBeginPolygon

gx_curve_cursor.

inflate_block

is_compromised

jinit_inverse_d.

jpeg_finish_out.

jpeg_stdio_src

motion_vector

mp_dmul

mp_shortmod

pack_tree_iter

pbm_getint

post_process_pr.

zero

0

2.64

0 0 0

3.50

0

4.78

0 0 0 0 0 0

11.8

0 0 0 0

10.1

:

Baseline: quality of code produce without SIMD instructions
Dots over bars means solver timeout
Geometric mean improvement: 2 %∗

Up to 11.8 % quality improvement
∗For confidence intervals, see dissertation
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SIMD Selection: Case Studies

Select (in most functions):

block:
e = add a, b
f = add c, d
...

block:
e, f = add2 a, b, c, d

...
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SIMD Selection: Case Studies

Move + select (in gl_read_alpha_s):

block1:
e = add a, b
...

block2:
...
f = add c, d

block1:
e, f = add2 a, b, c, d
...

block2:

...
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Impact by Solving Techniques

Comparing:
Solving time by model without solving techniques
Solving time by model with solving techniques

Expected results:
Considerable improvement with techniques
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Comparison: Solving Time

0 %

2000 %

4000 %

6000 %

8000 %

10 000 %

12 000 %

14 000 %

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gl_TexImage3DEX.

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

114
411

5210

306 136

13 200

∗∗ 670
341 203

580 540

1320

∗∗ −23.7
342

1180

3420

391
48.2

Baseline: solving time by model without solving techniques
∗∗ means baseline fails to find any solution
Geometric mean improvement: 621 %∗

Up to 13 200 % solving time improvement

∗For confidence intervals, see dissertation
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Comparison: Number of Optimality Proofs
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Experiment Conclusions

Handles architecture with rich instruction set
I approach is flexible

Handles programs of sufficient complexity
Scales to medium-sized functions
I approach is practical

Generates code of equal or better quality than state of the art
I approach is competitive
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Overview

1. Related Work and Background

2. Thesis

3. Approach

4. Experimental Evaluation

5. Model Extensions

6. Conclusion
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Contributions

Proposes model extensions for integrating instruction
scheduling and register allocation
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Model Extensions

Modeling instruction scheduling

In which cycle is each selected match executed?
I Values must be produced before use
I Processor resources must not be exceeded
I See dissertation for details

Modeling register allocation

Which register is assigned to each value?
If not enough registers, which value to spill?

I Values must not be destroyed before last use
I Live ranges determined by schedule
I See dissertation for details

Approach is extensible
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Overview

1. Related Work and Background

2. Thesis

3. Approach

4. Experimental Evaluation

5. Model Extensions

6. Conclusion
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Future Work

Generate executable code
I Engineering task (method for evaluating applicability)

Select instructions for Intel X86 with AVX
I Ubiquitous, rich instruction set
I AVX uses different set of registers

Support recomputation of values
I Can improve code quality in certain cases

addr = add x, y
a = memload addr
b = memload addr

a = memload [x + y]
b = memload [x + y]

I Violates exact cover assumptions
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Future Work

Integrate instruction scheduling and register allocation∗

I Known to interact with instruction selection and
global code motion (e.g. moving immediate loads may
increase register pressure)

Explore IR-to-IR transformations
I Many peephole optimizations (e.g. InstCombine in LLVM)

equivalent to pattern matching and selection

∗Castañeda Lozano et al. “Combinatorial Spill Code Optimization and Ultimate Coalescing”.
In: Proceedings of LCTES’14, pp. 23–32. ACM, 2014.
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Take Away
Problem:

Instruction selection techniques not keeping up with
processor advancements
I New features continuously added (SIMDs, SATADD, . . . )
I Cannot be handled by existing IS methods
I Problem only going to get worse

Solution: Universal Instruction Selection
Combines instruction selection with global code motion
I to leverage selection of complex instructions

Uses a sophisticated representation
I to model these instructions

Based on novel constraint model
I to accommodate interaction between these tasks

Available on github.com/unison-code/uni-instr-sel

96

github.com/unison-code/uni-instr-sel


Overview

1. Related Work and Background

2. Thesis

3. Approach

4. Experimental Evaluation

5. Model Extensions

6. Conclusion

7. Extra Material
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Contributions

C1 Presents comprehensive and systematic survey
a. examines over four decades of research
b. identifies four fundamental principles of instruction

selection
c. identifies five instruction characteristics
d. identifies connections between instruction selection and

other code generation problems yet to be explored
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Contributions

C2 Introduces novel program and instruction representation
a. captures both data and control flow

(for entire functions and instructions)
b. enables unprecedented range of instruction behavior to

be captured as graphs
c. crucial for combining instruction selection and global code

motion
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Contributions

C3 Introduces constraint model
a. enables uniform selection of data and control instructions

(first to do so)
b. integrates of instruction selection with global code motion

(first to do so)
c. integrates data copying, value reuse, and block ordering

C4 Introduces techniques to improve solving
(essential for scalability)
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Contributions

C5 Presents thorough experiments, demonstrating approach
to generate code equal or better than state of the art

C6 Proposes model extensions for integrating instruction
scheduling and register allocation
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Publications

G. Hjort Blindell. Instruction Selection: Principles, Methods,
and Applications. Springer, 2016. (C1)
G. Hjort Blindell, R. Castañeda Lozano, M. Carlsson,
C. Schulte. “Modeling Universal Instruction Selection”. In:
Proceedings of CP’15. Springer, 2015. (C2, C3)
G. Hjort Blindell, M. Carlsson, R. Castañeda Lozano,
C. Schulte. “Complete and Practical Universal Instruction
Selection”. In: ACM Transactions on Embedded Computing
Systems (2017). (C4, C5)

C6 in dissertation only
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Example at Risk of Cyclic Data Dependency

. . .
p2 = p1 + 4
store q1, p2
q2 = q1 + 4
store p1, q2

q1

+

q2

st

+

p1

p2

st

4

m1 m2
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Example

block:
. . .
store p, . . .
call foo, p, . . .
store p, . . .

st

p

foo

st

state node

block
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Capture Implicit Deps Via State Nodes

block:
. . .
store p, . . .
call foo, p, . . .
store p, . . .

st

p

foo

st

state node

block
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Data-Flow Edge Prevents “Upward” Moves

block:
. . .
store p, . . .
call foo, p, . . .
store p, . . .

st

p

foo

st

state node

block
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Definition Edge Prevents “Downward” Moves

block:
. . .
store p, . . .
call foo, p, . . .
store p, . . .

st

p

foo

st

state node

block
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Detecting Cyclic Data Dependencies

q1

+

q2

st

+

p1

p2

st

4

m1 m2

m1 m2

dependency graph

For each cycle in dependency graph, not all matches may be
selected
Similar to method used by Ebner et. al (2008)
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Redundant Copying

v1

cp cp

v2 v3

v1 in location A

v2, v3 in location B

copy v1 copy v1

v1 needlessly copied twice

Single copy instruction used
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Alternative Values

v1

cp cp

v2 v3

v1 in location A

v2, v3 in location B

copy v1 copy v1

v1 and v2 interchangeable

Single copy instruction used
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Alternative Values

v1

cp cp

v2 v3

v1 in location A

v2, v3 in location B

copy v1 copy v1

v1 and v2 interchangeable
Single copy instruction used
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ϕ-Patterns

ϕ

i1 ik. . .

ϕ-pattern

ϕ

i1 ik

b1 bk

. . .

. . .

Extended ϕ-pattern
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Case Requiring Additional Jump Insertion

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

bnz falls to next instruction if cond = F
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As Is: No Valid Order

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C
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Requires Additional Jump Instruction

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C

T

F

F

T

bnz cond1, B

bnz cond2, B

A

B

C

bnz cond1, B bnz cond2, BA

C

B
bnz cond1, B
br C

bnz cond2, B

A

B

C

bnz cond2, B
br C

bnz cond1, BA

B

C
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Extend Pattern Set With Dual-Target Branch
Patterns

For each pattern with fall-through condition:

T F
c.br

fall-through

A

B C

Emit: Cost:
bnz cond, B 1

T F
c.br

A

B C

Emit: Cost:
bnz cond, B 1 + cost(br)
br C
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Modeling Global Instruction Selection
Variables:
∀m ∈M : sel[m] ∈ {0, 1}
∀o ∈ O : omatch[o] ∈Mo
∀d ∈ D : dmatch[d] ∈Md

Constraints:
Every operation must be covered by exactly one selected
match:

∀o ∈ O, ∀m ∈Mo : omatch[o] = m⇔ sel[m] (5.1)

Every datum must be defined by exactly one selected match:

∀d ∈ D,∀m ∈Md : dmatch[d] = m⇔ sel[m] (5.2)

Prevent cyclic data dependencies

∀f ∈ F :
∑
m∈f

sel[m] < |f | (5.3)
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Modeling Global Code Motion
Variables:
∀o ∈ O : oplace[o] ∈ B
∀d ∈ D : dplace[d] ∈ B

Constraints:
All operations covered by a match must be placed in the
same block:

∀m ∈M,∀o
1
, o

2
∈ covers(m) :

sel[m]⇒ oplace[o
1
] = oplace[o

2
]

(5.4)

Matches with entry block must be placed at that block:

∀m ∈M,∀o ∈ covers(m),∀b ∈ entry(m) :
sel[m]⇒ oplace[o] = b (5.5)

All uses of data must be dominated by its definitions:

∀m ∈Mϕ,∀d ∈ uses(m),∀o ∈ covers(m) :
sel[m]⇒ oplace[o] ∈ dom(dplace[d]) (5.6)
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Modeling Global Code Motion
Constraints:

Data must be defined either where match is placed or in one
of its spanned blocks:

∀m ∈M, ∀d ∈ defines(m),∀o ∈ covers(m) :
sel[m]⇒ dplace[d] ∈ {oplace[o]} ∪ spans(m)

(5.7)

No other operations may be placed in consumed blocks:

∀m ∈M, ∀o ∈ O \ covers(m),∀b ∈ consumes(m) :
sel[m]⇒ oplace[o] 6= b (5.8)

Enforce restrictions made by definition edges:

∀d→ b ∈ E : dplace[d] = b (5.9)
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Modeling Data Copying
Variables:
∀d ∈ D : loc[d] ∈ L ∪ {l

int
}

Constraints:
Enforce location restrictions made by matches:

∀m ∈M, ∀d ∈ defines(m) ∪ uses(m) :
sel[m]⇒ loc[d] ∈ stores(m, d) (5.10)

Data in phi-matches must have the same location:

∀m ∈Mϕ,∀d1
, d

2
∈ defines(m) ∪ uses(m) :

sel[m]⇒ loc[d
1
] = loc[d

2
]

(5.11)

Enforce location restrictions made by calling convention:

∀d ∈ A : loc[d] ∈ argLoc(d) (5.12)
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Modeling Value Reuse
Variables:
∀p ∈ P : alt[p] ∈ Dp

Constraints:
Refinements of Eqs. 5.6, 5.7, 5.10, and 5.11:

∀m ∈Mϕ,∀p ∈ uses(m),∀o ∈ covers(m) :
sel[m]⇒ oplace[o] ∈ dom(dplace[alt[p] ]) (5.13)

∀m ∈M,∀p ∈ defines(m),∀o ∈ covers(m) :
sel[m]⇒ dplace[alt[p] ] ∈ {oplace[o]} ∪ spans(m)

(5.14)

∀m ∈M, ∀p ∈ defines(m) ∪ uses(m) :
sel[m]⇒ loc[alt[p] ] ∈ stores(m, p) (5.15)

∀m ∈Mϕ,∀p
1
, p

2
∈ defines(m) ∪ uses(m) :

sel[m]⇒ loc[alt[p
1
]] = loc[alt[p

2
]]

(5.16)
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Modeling Value Reuse

Constraints:
Data must be located in special location iff killed:

∀m ∈M×,∀p ∈ defines(m) :
sel[m]⇔ loc[alt[p]] = l

killed

(5.17)

Enforce restrictions made by defintion edges in phi-matches:

∀〈m, b, p〉 ∈ EM :
sel[m]⇒ dplace[alt[p]] = b (5.18)
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Modeling Block Ordering
Variables:
∀b ∈ B : succ[b] ∈ B

Constraints:
Blocks must be ordered in sequence of successors:

circuit(succ[b
1
], . . . , succ[bn]) (5.19)

Enforce restrictions made by matches with fall-through:

∀(m, b) ∈ J : sel[m]⇒ succ[entry(m)] = b ∨(
succ[succ[entry(m)]] = b ∧ isEmpty(succ[entry(m)])

) (5.20)

isEmpty(b) ≡
∧
o∈O

(oplace[o] 6= b ∨ omatch[o] ∈M⊥) (5.21)

No fall-through to function’s entry block:

∀(m, ·) ∈ J : sel[m]⇒ succ[entry(m)] 6= b
f (5.22)
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Objective Function

Variables:
cost ∈ N

Constraints:
Minimize total cost weighted by block execution frequencies:

cost =
∑
m∈M

sel[m]× cost(m)× freq(blockOf (m)) (5.23)

blockOf (m) ≡{
oplace[min(covers(m))] if covers(m) 6= ∅,
dplace[alt[min(defines(m))]] otherwise

(5.24)
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Refining Define-Before-Use Constraint
Variables:
∀p ∈ P : uplace[p] ∈ B

Constraints:
Encode dominance relation as matrix:

R ≡
[
〈b

1
, b

2
〉 b

1
, b

2
∈ B, b

1
∈ dom(b

2
)
]

(6.1)

All uses of data must be dominated by its definitions:

∀p ∈ Pϕ : table(〈uplace[p],dplace[alt[p]]〉,R) (6.2)

All uses of data must be made in the same block wherein the
match is placed:

∀m ∈Mϕ,∀o ∈ covers(m),∀p ∈ uses(m) :
sel[m]⇒ oplace[o] = uplace[p] (6.3)
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Refining Define-Before-Use Constraint

Constraints:
Uses of non-selected matches occurs in same block as its
definitions:

∀m ∈Mϕ,∀p ∈ uses(m) :
¬sel[m]⇒ uplace[p] = dplace[alt[p]] (6.4)

Fix uplace assignments for phi-matches:

∀p ∈ Pϕ : uplace[p] = min(B) (6.5)
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Refining Objective Function
Variables:
∀o ∈ O : ocost[o] ∈ N

Constraints:
Compute costs per op using divide-then-multiply method:

C ≡

 m ∈M,〈
o,m, b,

(
cost(m, o)× freq(b)

)〉
o ∈ covers(m),
b ∈ B


(6.7)

cost(m, o) =
{

q+ 1 if o < covers(m)[r+ 1],
q otherwise

(6.6)

q = bcost(m)/|covers(m)|c

r = cost(m) mod |covers(m)|
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Refining Objective Function

Constraints:
Compute costs per op using multiply-then-divide method:

C ≡

 m ∈M,
〈o,m, b, cost(m, o, b)〉 o ∈ covers(m),

b ∈ B

 (6.8)

cost(m, o, b) =
{

q+ 1 if o < covers(m)[r+ 1],
q otherwise,

(6.9)

q = q = bd/|covers(m)|c

r = d mod |covers(m)|

d = cost(m)× freq(b)
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Refining Objective Function

Constraints:
Restrict costs per operation:

∀o ∈ O : table(〈o,omatch[o],oplace[o],ocost[o]〉,C) (6.10)

Restrict total cost:

cost =
∑
o∈O

ocost[o] (6.11)
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Implied Constraints
If all matches covering non-ϕ-node operation o do not span
any blocks, define some datum d

1
, and use some datum d

2
,

then block wherein d
2

is defined must dominate block
wherein d

1
is defined:

∀o ∈ {o′ | o′ ∈ Oϕ,m ∈Mo′ s.t. consumes(m) = ∅},

∀d
1
∈
{
d d ∈ dataOf (o, defines),m ∈Mo,
∃p ∈ defines(m) : Dp = {d}

}
,

∀d
2
∈
{
d d ∈ dataOf (o,uses),m ∈Mo,
∃p ∈ uses(m) : Dp = {d}

}
:

table(〈dplace[d
1
],dplace[d

2
]〉,R) ∧

oplace[o] = dplace[d
1
]

(6.12)

dataOf (o, f ) ≡
⋃

m∈Mo, p∈ f(m) s.t.
covers(m)= {o}

Dp (6.13)
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Implied Constraints
If all matches covering the same non-ϕ-node operation span
a set S of blocks and define some datum d, then d must be
defined in a block in S:

∀S ∈ 2
B,∀d ∈ D,

∀o ∈
{
o′ o′ ∈ Oϕ,m ∈Mo′,∃p ∈ defines(m) :

spans(m) = S ∧Dp = {d}

}
:

dplace[d] ∈ S

(6.14)

If all non-ϕ-matches covering operation o have entry block b,
then o must for sure be placed in b:

∀b ∈ B,
∀o ∈ {o′ | o′ ∈ O,m ∈Mo′ \Mϕ s.t. entry(m) = {b}} :

oplace[o] = b
(6.15)
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Implied Constraints
If the matches covering the same non-ϕ-node operation all
have identical entry blocks, say b, and make use of some
datum d, then block wherein d is defined must dominate b:

∀b ∈ B,∀d ∈
{
d′ o′ ∈ Oϕ,m ∈Md′,∃p ∈ uses(m) :

entry(m) = {b} ∧Dp = {d}

}
:

table(〈b,dplace[d]〉,R)
(6.16)

If a datum d appears in definition edge d→ b and is defined
by ϕ-matches only, then operation covered by these matches
must be placed b:

∀d→ b ∈ E,∀o ∈
{
o′ | m ∈Md ∩Mϕ, o′ ∈ covers(m)

}
:

oplace[o] = b
(6.17)
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Implied Constraints

If a non-ϕ-match m spanning no blocks is selected, then all
data used and defined by m must take place in the same
block:

∀m ∈ {m′ | m ∈Mϕ, spans(m) = ∅} ,
∀p

1
, p

2
∈ uses(m) s.t. p

1
< p

2
:

sel[m]⇒ uplace[p
1
] = uplace[p

2
]

(6.18)

∀m ∈ {m′ | m ∈Mϕ, spans(m) = ∅} ,
∀p

1
, p

2
∈ defines(m) s.t. p

1
< p

2
:

sel[m]⇒ dplace[alt[p
1
]] = dplace[alt[p

2
]]

(6.19)

∀m ∈ {m′ | m ∈Mϕ, spans(m) = ∅} ,
∀p

1
∈ uses(m) \ defines(m),∀p

2
∈ defines(m) :

sel[m]⇒ uplace[p
1
] = dplace[alt[p

2
]]

(6.20)
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Implied Constraints
If a non-ϕ-match spanning some blocks is selected, then all
uses of its input data must occur in the same block:

∀m ∈ {m′ | m ∈Mϕ, spans(m) 6= ∅} ,
∀p

1
, p

2
∈ uses(m) \ defines(m) s.t. p

1
< p

2
:

sel[m]⇒ uplace[p
1
] = uplace[p

2
]

(6.21)

If all non-kill matches covering some operation require some
non-state datum d as input, then d cannot be an intermediate
value nor be killed:

∀S ∈ 2
D�,

∀o ∈
{
o′ o′ ∈ O,m ∈Mo′,
∃p ∈ uses(m) \ defines(m) : Dp = S

}
,

∃d ∈ S : loc[d] /∈ {l
int
, l

killed
}

(6.22)
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Implied Constraints

If all non-kill matches defining a non-state datum d have d as
an exterior value, then d must be made available:

∀d ∈
{
d′ d′ ∈ D�,m ∈Md′ \M×,∃p ∈ defines(m) :

Dp = {d′} ∧ isExt(m, p)

}
,

loc[d] /∈ {l
int
, l

killed
}

(6.23)
Restrict locations of a non-state datum d to those where the
definers can put d:

∀d ∈ D�,∀S ∈ 2
L∪{lint,lkilled} s.t.

S =

{
l m ∈ Dd \M×, p ∈ defines(m),

l ∈ stores(m, p) s.t. d ∈ Dp

}
:

loc[d] ∈ S

(6.24)
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Implied Constraints
Restrict locations of a non-state datum d to those where the
users can access d:

∀d ∈ D�,∀S ∈ 2
L∪{lint,lkilled} s.t.

S =

{
l m ∈M×, p ∈ uses(m),

l ∈ stores(m, p) s.t. d ∈ Dp

}
∧ S 6= ∅ :

loc[d] ∈ S

(6.25)

If for any two blocks b
1

and b
2

there exists a match requiring
b

2
to follow b

1
but there are no matches requiring any other

blocks to follow b
1

nor requiring b
2

to follow any other blocks,
then it is always safe to force b

2
to follow b

1
:

∀b
1
, b

2
∈ B s.t. {entry(m) | (m, b

2
) ∈ J} = {b

1
} ∧

{b | (m, b) ∈ J s.t. entry(m) = {b
1
}} = {b

2
} :

succ[b
1
] = b

2

(6.26)
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Symmetry and Dominance Breaking Constraints

Fix location of state data:

∀d ∈ D� : loc[d] = l
int

(6.27)

Fix assignment of alt variables for non-selected matches:

∀m ∈M, ∀p ∈ defines(m) ∪ uses(m) :
¬sel[m]⇒ alt[p] = min(Dp)

(6.28)

If an operand representing input with multiple data does not
take its minimum value, then the corresponding match must
be selected:

∀m ∈M,∀p ∈ uses(m) \ defines(m) s.t. |Dp| > 1 :
alt[p] 6= min(Dp)⇒ alt[p] /∈ {l

int
, l

killed
} (6.29)
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Symmetry and Dominance Breaking Constraints
Enforce order on alt variables for chains of interchangeable
data:

∀c ∈ I,∀p
1
, . . . , pk ∈ Pϕ s.t.

p
1
6= · · · 6= pk ∧ (∀1 ≤ i ≤ k : Dpi = c) :

VPC(c, alt[p
1
], . . . , alt[pk])

(6.30)

Enforce order on sel variables for copy-related null-copy
matches:

∀c ∈ I◦, ∀1 ≤ i < k,∃mi ∈Mc[i] ∩M◦⊥ :
increasing(sel[m

1
], . . . , sel[mk])

(6.31)

increasing(x
1
, . . . , xk) ≡

∧
1≤ i< k

xi ≤ xi+1
(6.32)

Enforce order on sel variables for copy-related kill matches:

∀c ∈ I◦,∀1 ≤ i < k, ∃mi ∈Mc[i] ∩M× :
increasing(sel[m

1
], . . . , sel[mk]),

(6.33)
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Tightening Cost Bounds

Constrain bounds on cost variable:

C
rlx
≤ cost < C

heur
(6.34)

C
rlx
≡ cost of solution computed for relaxed model

C
heur
≡ cost of solution computed by LLVM
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Branching Strategies

First branch on ocost variables
I Variable with largest difference between two smallest values

in domain (maximum regret)
I Smallest value

Remaining variables decided by Chuffed
I Free search, set to 100
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Presolving
A match m

1
is dominated if there exists another match m

2

such that
I m

1
has greater than or equal cost to m2,

I both cover the same operations,
I both have the same entry blocks (if any),
I both span the same blocks (if any),
I both have the same definition edges (if any),
I m

1
has at least as strong location requirements on its data as

m2 – that is

∀p
1
∈ uses(m

1
) ∪ defines(m

1
) :

∃p2 ∈ uses(m2) ∪ defines(m2) :
Dp

1
⊆ Dp2

∧ stores(m
1
, p

1
) ⊆ stores(m2, p2)

– and
I both apply the same additional constraints (if any) when

selected
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Presolving
Set of illegal matches which would leave some operation
uncoverable if selected:

{m | m ∈M, o
1
, o

2
∈ O s.t. Mo

1
⊂Mo2

∧m ∈Mo2
} (6.35)

Set of illegal matches which would leave some datum
undefinable if selected:

{m | m ∈M, d
1
, d

2
∈ D s.t. Md

1
⊂Md2

∧m ∈Md2
} (6.36)

Set of illegal kill matches which would kill a datum d for
which there are no alternatives for matches using d:m

1

m
1
∈M×, p1

∈ defines(m
1
), d ∈ Dp

1
,

m
2
∈M×, p2

∈ uses(m
2
) s.t.

d ∈ Dp2
⇒ Dp2

= {d}

 (6.37)
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Presolving

If a match m is not a kill match and defines a datum d in a
location that cannot be accessed by any of the matches
using d, then m is illegal:m

m ∈M×, p ∈ defines(m), d ∈ Dp s.t.
isExt(m, p) ∧ cupUseLocsOf (d) 6= ∅ ∧
stores(m, p) ∩ cupUseLocsOf (d) = ∅

 (6.38)

cupUseLocsOf (d) ≡
⋃

m∈Md\M×,
p∈ uses(m) s.t. d∈Dp

stores(m, p) (6.39)
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Presolving

If a match m is not a kill match and uses a datum d from a
location that cannot be written to by any of the matches
defining d, then m can never be selected and is thus illegal:m

m ∈M×, p ∈ uses(m) \ defines(m), d ∈ Dp s.t.
cupDefLocsOf (d) 6= ∅ ∧
stores(m, p) ∩ cupDefLocsOf (d) = ∅


(6.40)

cupDefLocsOf (d) ≡
⋃

m∈Md\M×,
p∈ defines(m) s.t. d∈Dp

stores(m, p) (6.41)
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Presolving

If there exists a null-copy match to cover a copy node c, then
the kill match covering c is redundant:

{m | m ∈M×, o ∈ covers(m) s.t. Mo ∩M◦⊥ 6= ∅} (6.42)

Redundant set of null-copy matches if intersection of all use
and definition locations is not empty (exclude const copies):m

m ∈M◦ \M⊥, d1
∈ uses(m), d

2
∈ defines(m)

s.t. Dd
1
∩Mϕ = ∅ ∧Dd2

∩Mϕ = ∅ ∧ d
1
/∈ D

∧ capUseLocsOf (d
1
) ∩ capDefLocsOf (d

2
) 6= ∅


(6.43)
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Canonical Locations

r1 r2 r3 r4 r5 r6 r7 r8 r9r10

r1 r5 r6 r7 r9

locations

stores(m
1
, p

1
)

stores(m
1
, p2)

stores(m
1
, p3)

stores(m2, p4
)

canonical locations

1
2
3
4

ta
gs
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Alternative Values vs. Match Duplication

0]
5]

10]
15]
20]
25]
30]
35]
40]
45]
50]

bi_reverse

device_color_en.

dict_put_string

ecSub
FORD1

free_tree_nodes

gl_flip_bytes

gluNextContour

gx_color_frac_m.

hash_initial

jinit_huff_deco.

jinit_phuff_dec.

jpeg_alloc_quan.

jpeg_has_multip.

mp_quo_digit

name_ref_sub_ta.

putACfirst

putpicthdr

putseqdispext

reg2rsaref

0.625 0.229

1.64 2.43 2.10 1.26
2.80 1.80 1.46

13.9

4.08
5.52

1.01 1.76 1.50
0.25

1.50 1.06
0.171

46.9

Solving time comparison
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Alternative Values vs. Match Duplication

0]

0.05]

0.1]

0.15]

0.2]

0.25]

bi_reverse

device_color_en.

dict_put_string

ecSub
FORD1

free_tree_nodes

gl_flip_bytes

gluNextContour

gx_color_frac_m.

hash_initial

jinit_huff_deco.

jinit_phuff_dec.

jpeg_alloc_quan.

jpeg_has_multip.

mp_quo_digit

name_ref_sub_ta.

putACfirst

putpicthdr

putseqdispext

reg2rsaref

0 0

0.103

0.111

0.002

0.038

0 0 0 0 0

0.02

0.143

0

0.091

0 0

0.097

0.231

0.077

Code quality comparison
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Dual-Target Branch Patterns vs. Branch
Extension

0]

0.1]

0.2]

0.3]

0.4]

0.5]

g72x_init_state

gl_Normal3fv

jinit_huff_enco.

predictor_pole

gs_reversepath

jpeg_has_multip.

rsaref2reg

gluNextContour

inflateEnd

internal_transp.

is_tempfile

mp_dmul

gl_swap2

trueRandEvent

finish_pass_mas.

test_nurbs_curv.

gluEndPolygon

nextkeypacket

0 0 0 0 0 0 0

0.015

0.044

0

0.043

0 0.002 0

0.021

0
0.01

0.032

Code quality comparison
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Dual-Target Branch Patterns vs. Branch
Extension

0]
2]
4]
6]
8]

10]
12]
14]
16]
18]
20]

g72x_init_state

gl_Normal3fv

jinit_huff_enco.

predictor_pole

gs_reversepath

jpeg_has_multip.

rsaref2reg

gluNextContour

inflateEnd

internal_transp.

is_tempfile

mp_dmul

gl_swap2

trueRandEvent

finish_pass_mas.

test_nurbs_curv.

gluEndPolygon

nextkeypacket

−0.001 −0.049 −0.01 −0.006 0.098 0.045 0.051

0.934
1.38

0.579

2.39
1.73 2.22

0.5

4.31
4.93

19.7

5.12

Solving time comparison
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Divide-Then-Multiply Method vs.
Multiply-Then-Divide Method

0]
10]
20]
30]
40]
50]
60]
70]
80]
90]

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gl_TexImage3DEX.

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

1.88 4.12

84.2

6.48
2.41

0.057 0.001
1.57 1.81

0.384

5.10
1.28

0.064 0.347 0

3.03
0.014

41.9

0.265 0.48

Solving time comparison
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Refined Objective Function vs. Naive Objective
Function

0]

0.05]

0.1]

0.15]

0.2]

0.25]

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gl_TexImage3DEX.

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

∗ ∗ ∗ ∗∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗∗ ∗ ∗ ∗

0.201

∗∗ ∗ ∗ ∗ 0

0.033

∗ ∗ ∗ 0.002

Code quality comparison
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Eq. 6.12 vs. No Such Constraint

−0.4]
−0.2]

0]
0.2]
0.4]
0.6]
0.8]

1]
1.20]
1.40]

−0.269

1.34

−0.015

0.553

0.114

0.994

0

0.077

0.13

0.28

0.35
0.386

0.078

0.343

0

0.502

0.071 0.076

0.008 −0.037

Solving time comparison
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Eq. 6.14 vs. No Such Constraint

−0.4]

−0.2]

0]

0.2]

0.4]

0 0.001
0.014 0.006 0.002 −0.003 0 −0.004 −0.008 −0.005 0.002 −0.002 0.002 0.002 0

0.01 −0.001 0.001 −0.004 0

Solving time comparison
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Eq. 6.15 vs. No Such Constraint

−3]
−2.50]
−2]

−1.50]
−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

−2.52 0.045 −0.12 −0.046 −0.077

2.30

0 0.031 −0.002 0 0.027

0.66

−0.001

0.148

0

0.114
0.21

1.28

−0.001
0.047

Solving time comparison
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Eq. 6.16 vs. No Such Constraint

0]
1]
2]
3]
4]
5]
6]
7]
8]

0.484

−0.023

0.26 0.202

7.76

−0.029 0 −0.015
0.133

0.025 0.022
0.124

0.006 −0.007 0 0.031 −0.019 −0.151 0.011 −0.124

Solving time comparison
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Eq. 6.17 vs. No Such Constraint

−0.4]

−0.2]

0]

0.2]

0.4]

0.002 0.001
0.012

0.001 0.001 0.001 0 −0.002 −0.003 −0.008 0.002 −0.002 0.004 0.002 0
0.012 −0.004 0 0.001 0

Solving time comparison
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Eq. 6.18 vs. No Such Constraint

0]

1]

2]

3]

4]

5]

6]

−0.389
0.074 −0.08 0.015

5.91

−0.083 −0.001 0.014 −0.015 −0.021 −0.01

0.533

−0.004

0.167

0 −0.053 0 −0.19 −0.011 −0.207

Solving time comparison
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Eq. 6.19 vs. No Such Constraint

−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]
3.50]

4]

−0.564
0.074 −0.246 −0.035

3.63

−0.022 −0.001 −0.037 −0.02 −0.013 0.001

0.41

0.005

0.343

−0.047
0.049 −0.007

0.571

−0.005 −0.06

Solving time comparison
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Eq. 6.20 vs. No Such Constraint

0]

1]

2]

3]

4]

5]

6]

7]

−0.276
0.086 −0.257 −0.035

6.46

−0.029 −0.001 −0.017 −0.04 −0.026 −0.01

0.679

−0.008

0.343

−0.024
0.1 −0.01 −0.063 −0.012

0.084

Solving time comparison
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Eq. 6.21 vs. No Such Constraint

−0.4]

−0.2]

0]

0.2]

0.4]

0 0.001 0.008 0.004 −0.001 −0.001 0 0 −0.004 −0.009 0 −0.003 0.001 0 0
0.013 −0.003 −0.001 0 0.005

Solving time comparison
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Eq. 6.22 vs. No Such Constraint

−1.50]
−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

−1.40 0.022 −0.208 0.001 0.024
0.101

0 −0.031 0.002 −0.003 0.003

2.16

0.004 −0.142 0 0.007 0.006

1.44

−0.005 −0.184

Solving time comparison
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Eq. 6.23 vs. No Such Constraint

−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]

−0.98
0.066 0.05 0.066

2.52

−0.006 0
0.072

0.027 −0.003 0.023

0.413

0.013

0.28

0

0.091
0.016

0.264

0.041

0.256

Solving time comparison
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Eq. 6.24 vs. No Such Constraint

−2]
−1]

0]
1]
2]
3]
4]
5]
6]

−1.96
0.312

−0.178 0.055

5.24

−0.043 0 −0.033 0.01 −0.023 0.019

0.78

0.023 0.001 0

0.189 −0.006

0.861

0.035 0.081

Solving time comparison
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Eq. 6.25 vs. No Such Constraint

−1]

−0.8]

−0.6]

−0.4]

−0.2]

0]

0.2]

0.4]

−0.579 −0.567 −0.262 −0.009

0.06

−0.046 −0.003

0.257

0.004 −0.013
0.014

0.37

−0.003 −0.949 0 −0.041 −0.011 −0.368 −0.009 −0.008

Solving time comparison
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Eq. 6.26 vs. No Such Constraint

−0.4]

−0.2]

0]

0.2]

0.4]

0.6]

0.8]

1]

0.002 0.001 −0.217 −0.079
0.021

0.269

−0.001 −0.002 −0.005 −0.011 0.007

0.947

0.003 0.004 0

0.069

0.197

−0.001 −0.001 −0.032

Solving time comparison
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Only Good Implied Constraints vs. No Such
Constraints

−3]
−2]
−1]

0]
1]
2]
3]
4]
5]
6]

1.02 0.988

0.35

1.03

−2.43
0.222

0.001 0.064 0.075

0.301

0.476

5.37

0.05

0.44

0 −0.04

0.542

0.927

0.482

0.165

Solving time comparison
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All Implied Constraints vs. No Such Constraints

0]

1]

2]

3]

4]

5]

−0.111

1.22

0.103

0.877

0.097

4.83

0

0.111
0.058

0.237

0.47

2.84

0.041

0.343

0

0.841
0.757

0.448 0.48

0.125

Solving time comparison
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Eq. 6.27 vs. No Such Constraint

−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]

−0.67

0.139

−0.033 −0.034

2.73

0.011 0 0.021 0.044 −0.007 0.006

1.72

0.034

0.343

0 0.021 0.015 0.012 0.014 −0.196

Solving time comparison
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Eq. 6.28 vs. No Such Constraint

−0.6]
−0.4]
−0.2]

0]
0.2]
0.4]
0.6]
0.8]

1]

−0.23 −0.246

0.191

−0.005

0.962

0.868

−0.001

0.094

0.013 −0.023

0.042

−0.152 −0.001 −0.511 0

0.038

0.702

−0.089

0.077

−0.321

Solving time comparison
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Eq. 6.29 vs. No Such Constraint

−0.4]

−0.2]

0]

0.2]

0.4]

0.001 −0.002
0.013 0.008 0.004 −0.003 0 −0.002 −0.007 −0.005 0.004 −0.002 0.002 −0.004 0

0.013
0.001 0 −0.005 0.002

Solving time comparison
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Eq. 6.30 vs. No Such Constraint

−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]
3.50]

−0.562

0.589

−0.147 0.016

3.49

1.26

−0.001

0.132

0.011 −0.006 0.005

1.53

0.011

0.343

0 0.021 −0.002

1.29

−0.01

0.103

Solving time comparison
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Eq. 6.31 vs. No Such Constraint

−0.4]

−0.2]

0]

0.2]

0.4]

0.001 0
0.009 0.003 0.011 −0.001 0 −0.004 −0.007 −0.009 0.002 −0.002 0.002 −0.002 0
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Eq. 6.33 vs. No Such Constraint
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Only Good Sym. and Dom. Breaking
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Remove Dominated Matches vs. Keep Them
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Eq. 6.35 vs. No Such Constraint
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Eq. 6.36 vs. No Such Constraint
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Eq. 6.37 vs. No Such Constraint
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Eq. 6.38 vs. No Such Constraint
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Eq. 6.40 vs. No Such Constraint
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Eq. 6.42 vs. No Such Constraint
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Eq. 6.43 vs. No Such Constraint
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Canonical Locations vs. All Locations
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Only Good Presolving vs. No Presolving
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No Bad Presolving vs. All Presolving
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All Presolving vs. No Presolving
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Only Good Solving Techniques vs. No Solving
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No Bad Solving Techniques vs. All Solving
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All Solving Techniques vs. No Solving
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