
Constraint-based Code Generation

Roberto Castañeda
Lozano

SICS (Swedish Institute of
Computer Science), Sweden

rcas@sics.se

Gabriel Hjort Blindell
KTH (School of ICT, KTH

Royal Institute of Technology),
Sweden

ghb@kth.se

Mats Carlsson
SICS, Sweden

matsc@sics.se

Frej Drejhammar
SICS, Sweden
frej@sics.se

Christian Schulte
KTH and SICS, Sweden

cschulte@sics.se

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compil-
ers, code generation, optimization; I.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search—
backtracking, scheduling

General Terms
Languages, Design, Performance

Keywords
constraint programming, instruction selection, register allo-
cation, instruction scheduling

1. INTRODUCTION
Compiler back-ends generate assembly code by solving

three main tasks: instruction selection, register allocation
and instruction scheduling. We introduce constraint models
and solving techniques for these code generation tasks and
describe how the models can be composed to generate code
in unison. The use of constraint programming, a technique
to model and solve combinatorial problems, makes code gen-
eration simple, flexible, robust and potentially optimal.

Today’s back-ends typically generate code in stages: in-
struction selection is followed by register allocation and in-
struction scheduling. Each stage commonly executes a heuris-
tic algorithm as taking optimal decisions is considered either
too complex or computationally infeasible. Both staging and
heuristics compromise the quality of the generated code and
by design preclude optimal code generation. Furthermore,
the use of heuristic algorithms complicates capturing com-
mon architectural features and adapting to new architec-
tures and frequent processor revisions. This is particularly
exacerbated for embedded processors which often impose ad-
ditional challenges such as irregular register banks and very
long instruction word (VLIW) capabilities. The use of a con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
M-SCOPES ’13, June 19-21, 2013, St. Goar, Germany.
Copyright 2013 ACM 978-1-4503-2142-6/13/06 . . . $15.00.

straint model as opposed to staged and heuristic algorithms
simplifies the construction of code generators and brings the
potential of generating optimal code.

Constraint-based code generation is organized as follows.
A low-level intermediate representation (LIR) of a function
in static single assignment form (SSA) and a processor de-
scription are taken as input. The different code generation
tasks are translated into constraint models which capture
the main challenges imposed by embedded processors: in-
struction selection on SSA graphs, global register allocation
including multiple register banks, register packing, spilling
and coalescing, and VLIW instruction scheduling [1]. The
problems corresponding to each constraint model are finally
solved in unison by a constraint solver as shown in Fig. 1.

intermediate
code

processor
description

register
allocation

instruction
selection

instruction
scheduling

unified
constraint
problem

constraint
solver

assembly
code

Figure 1: Code generation in unison.

2. CONSTRAINT PROGRAMMING
Constraint programming (CP) is a technique to model

and solve combinatorial problems [5]. In CP, problems are
modeled with decision variables and constraints that express
relations among the variables. Constraint solvers interleave
constraint propagation and search to find variable assign-
ments that satisfy the constraints. Constraint propagation
discards partial assignments that cannot take part in any
solution. When no further propagation is possible, search
decomposes the problem into several sub-problems in which
the process is repeated. Constraint solvers can also solve
optimization problems by applying branch-and-bound.

The main strength of CP is given by its ability to exploit
global structure existing in many combinatorial problems.
Such structure is captured by global constraints, which ex-
press relations among several variables. Global constraints
give a two-fold benefit: they allow reusing recurrent pat-
terns in modeling and can be exploited during propagation
to avoid exploring parts of the search space which cannot
lead to solutions. Modern constraint solvers provide an ar-
ray of dedicated propagation algorithms for common global
constraints.

3. INSTRUCTION SELECTION
The task of instruction selection is to transform the pro-

gram from its intermediate form into target assembly in-
structions. In this approach, instruction selection is done
by first converting the SSA graph into a directed acyclic
graph by breaking the backward edges, and then perform-
ing pattern labeling via an augmented version of Hoffmann
and O’Donnell’s bottom-up algorithm [2]. Once all appli-
cable pattern instances are detected, a constraint model is
produced by forming constraints such that all nodes must be
covered by exactly one pattern. The constraint model can be
then composed with the register allocation and instruction
scheduling models.

4. REGISTER ALLOCATION
The core task of register allocation is to assign program

temporaries to either processor registers or memory, ensur-
ing that temporaries that are live simultaneously are as-
signed to different registers.

Besides whole-function register assignment, the constraint
model captures register packing (assign several small tem-
poraries to the same register), handling of multiple register
banks (subsuming spilling to memory) and coalescing (as-
sign related temporaries to the same register to save move
instructions). In particular, spilling, data transfer across
register banks and coalescing are modeled in a novel, unified
manner where different processor register banks and mem-
ory are represented in the same way [1].

The register allocation for a basic block is projected onto
a rectangular area with registers in the horizontal dimension
and clock cycles in the vertical dimension. Each temporary
is represented as a rectangle with its definition and last use
cycles as top and bottom coordinates. The horizontal coor-
dinate is a decision variable that represents the register to
which the temporary is assigned. A non-overlapping rect-
angles constraint, standard in CP, ensures that temporaries
which are live simultaneously are assigned to different reg-
isters.

In a LIR temporaries have different sizes according to their
source data types. Most processors allow several small tem-
poraries to be packed into the same register. This feature,
difficult to exploit for traditional approaches such as graph
coloring, is naturally modeled with CP by giving each tem-
porary rectangle a width proportional to its size [4]. Fig. 2 il-
lustrates register packing for the Hexagon digital signal pro-
cessor: 16-bit temporaries (t1, t2) have single width, 32-bit
temporaries (t3, t4) have double width.

R0 R1 R2 R3 R4

register

0

1

2

cy
cl
e

. . .

. . .
t1

t2

t3

t4

Figure 2: Register packing.

Register banks of limited capacity, inter-cluster communi-
cation in clustered VLIW processors and pre-assignments of
temporaries to registers due to calling conventions require

the generation of instructions that transfer data between
register banks and memory. This is modeled uniformly for
the first time by extending the input program with optional
copy instructions. Copies can be turned into spill instruc-
tions (load and store), register-to-register transfer instruc-
tions (move) or be discarded. If a copy is discarded, its
temporaries are coalesced by being assigned to the same
register.

Register allocation is typically solved on whole functions
(that is, globally) to reuse registers across basic blocks. To
model global register allocation LSSA is introduced as a
novel program form where SSA temporaries are split in each
basic block. The relation to the original SSA temporaries is
preserved by constraints that assign split temporaries to the
same register.

5. INSTRUCTION SCHEDULING
The core task of instruction scheduling is to assign issue

cycles to instructions such that the capacity of processor
resources is never exceeded and data and control dependen-
cies are satisfied. Scheduling becomes more challenging for
VLIW processors which can issue several instructions every
clock cycle.

A constraint model for VLIW instruction scheduling within
basic blocks is available [1]. Similarly to the approach of Ma-
lik et al. [3], variables are introduced to represent the issue
cycle of each instruction relative to the beginning of the basic
block. Processor resource constraints ensure that the capac-
ity of resources such as functional units is never exceeded.
Constraint solvers provide special propagation algorithms
for resource constraints as scheduling with resources is one
of their most successful applications. Precedence constraints
ensure that data and control dependencies are satisfied.

To exploit instruction-level parallelism in VLIW proces-
sors, instructions must be combined into valid bundles. Tra-
ditional code generators must be extended in non-trivial
ways to support bundling. In contrast, the proposed CP
scheduling model subsumes bundling as the number of in-
structions that can be issued in each cycle is not artificially
constrained.

The close interdependencies between register allocation
and instruction scheduling make it advantageous to solve
both problems in unison. This is achieved by simply making
the top and bottom coordinates of each temporary rectangle
variable and relating them to the issue cycles of its definer
and last user.

6. STATUS
The constraint models for register allocation and instruc-

tion scheduling are discussed in a conference article [1]. The
initial results show that the quality of the generated code is
on par with that of LLVM for a simple instruction set archi-
tecture such as MIPS32. This is expected since MIPS32 is
designed to suit traditional code generation methods.

The current research focuses on implementing the instruc-
tion selection model, refining the register allocation model
and generating code for embedded processors. The extra
challenges imposed by these processors make them more
likely to illustrate the advantages of the constraint-based
approach.

7. REFERENCES
[1] R. Castañeda Lozano, M. Carlsson, F. Drejhammar,

and C. Schulte. Constraint-based register allocation
and instruction scheduling. In CP, pages 750–766.
Springer, 2012.

[2] C. M. Hoffmann and M. J. O’Donnell. Pattern
matching in trees. Journal of the ACM, 29(1):68–95,
Jan. 1982.

[3] A. M. Malik, J. McInnes, and P. van Beek. Optimal
basic block instruction scheduling for multiple-issue
processors using constraint programming. International
Journal on Artificial Intelligence Tools, 17(1):37–54,
2008.

[4] F. Pereira and J. Palsberg. Register allocation by
puzzle solving. SIGPLAN Not., 43:216–226, June 2008.

[5] F. Rossi, P. van Beek, and T. Walsh. Handbook of
Constraint Programming. Elsevier, 2006.

