
Constraint-Based Code Generation

Gabriel Hjort Blindell – KTH, SICS

Roberto Castañeda Lozano – SICS

Mats Carlsson – SICS

Frej Drejhammar – SICS

Christian Schulte – KTH, SICS

IOSS 2013

Outline

1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

2 / 29

1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

3 / 29

What is code generation?

4 / 29

What is code generation?

Target-independent program representation → Optimized
target-specific assembly code

4 / 29

What is code generation?

Target-independent program representation → Optimized
target-specific assembly code

One of the oldest computer science problems

4 / 29

What is code generation?

Target-independent program representation → Optimized
target-specific assembly code

One of the oldest computer science problems

Set of interdependent NP-complete problems

4 / 29

What is code generation?

Target-independent program representation → Optimized
target-specific assembly code

One of the oldest computer science problems

Set of interdependent NP-complete problems

Traditionally solved using non-optimal heuristics

4 / 29

What is code generation?

Target-independent program representation → Optimized
target-specific assembly code

One of the oldest computer science problems

Set of interdependent NP-complete problems

Traditionally solved using non-optimal heuristics
Phase ordering

4 / 29

Traditional compiler

5 / 29

Traditional compiler

Frontend Optimizer Backend

Source
program IR IR

Assembly
code

5 / 29

Traditional compiler

Instruction
selection

Instruction
scheduling

Register
allocation

Backend

IR

Assembly
code

+ temps.

Assembly
code

+ temps.
Assembly

code

6 / 29

Intermediate representation (IR)

7 / 29

Intermediate representation (IR)

Control flow graph
(CFG), per function

7 / 29

Intermediate representation (IR)

z = x + x;

Control flow graph
(CFG), per function

7 / 29

Intermediate representation (IR)

z = x + x;

Control flow graph
(CFG), per function

c4 rsp c4 rsp

+

ld

+

ld

+

Expression tree, per block

7 / 29

Intermediate representation (IR)

z = x + x;

Control flow graph
(CFG), per function

c4 rsp

+

ld

+

Directed acyclic graph
(DAG)

7 / 29

From DAGs to assembly code

8 / 29

From DAGs to assembly code

c4 rsp

+

ld

+

8 / 29

From DAGs to assembly code

c4 rsp

+

ld

+

Select which CPU instructions to use

8 / 29

From DAGs to assembly code

c4 rsp

+

ld

+

Select which CPU instructions to use

Find covering with least cost

8 / 29

From DAGs to assembly code

c4 rsp

+

ld

+

Select which CPU instructions to use

Find covering with least cost

ri
c = 0

P1

ci
c = 1
mvi r, ci
P2

+
c = 1
add r3, r1, r2

P3

ci rj

+

c = 1
addi rd, rj, ci

P4

ld
c = 1
ld rd, raddr
P5

8 / 29

From DAGs to assembly code

c4 rsp

+

ld

+

Select which CPU instructions to use

Find covering with least cost

ri
c = 0

P1

ci
c = 1
mvi r, ci
P2

+
c = 1
add r3, r1, r2

P3

ci rj

+

c = 1
addi rd, rj, ci

P4

ld
c = 1
ld rd, raddr
P5

P4

P5

P3

∑
c = 3

8 / 29

From DAGs to assembly code

c4 rsp

+

ld

+

Select which CPU instructions to use

Find covering with least cost

ri
c = 0

P1

ci
c = 1
mvi r, ci
P2

+
c = 1
add r3, r1, r2

P3

ci rj

+

c = 1
addi rd, rj, ci

P4

ld
c = 1
ld rd, raddr
P5

P4

P5

P3

∑
c = 3

addi t0, rsp, 4

ld t1, t0
add tz, t1, t1

=⇒

8 / 29

From DAGs to assembly code

addi t0, rsp, 4

ld t1, t0
add tz, t1, t1

9 / 29

From DAGs to assembly code

addi t0, rsp, 4

ld t1, t0
add tz, t1, t1

Schedule instructions

9 / 29

From DAGs to assembly code

addi t0, rsp, 4

ld t1, t0
add tz, t1, t1

Schedule instructions

Assign temporaries to registers
(or spill to memory)

9 / 29

From DAGs to assembly code

addi t0, rsp, 4

ld t1, t0
add tz, t1, t1

Schedule instructions

Assign temporaries to registers
(or spill to memory)

addi r0, rsp, 4

ld r1, r0
add r2, r1, r1

Requires 3 registers

9 / 29

From DAGs to assembly code

addi t0, rsp, 4

ld t1, t0
add tz, t1, t1

Schedule instructions

Assign temporaries to registers
(or spill to memory)

addi r0, rsp, 4

ld r1, r0
add r2, r1, r1

Requires 3 registers

addi r0, rsp, 4

ld r0, r0
add r0, r0, r0

Requires only 1 register

9 / 29

1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

10 / 29

Our Approach

11 / 29

Our Approach

Constraint programming

11 / 29

Our Approach

Constraint programming

Optimality

11 / 29

Our Approach

Constraint programming

Optimality*

*Given enough patience and money to burn while waiting

11 / 29

Our Approach

Constraint programming

Optimality*

Flexible model

*Given enough patience and money to burn while waiting

11 / 29

Our Approach

Constraint programming

Optimality*

Flexible model
Integration

*Given enough patience and money to burn while waiting

11 / 29

Our Approach

Constraint programming

Optimality*

Flexible model
Integration

Current status

*Given enough patience and money to burn while waiting

11 / 29

Our Approach

Constraint programming

Optimality*

Flexible model
Integration

Current status

Instruction selection - concepts / ideas

*Given enough patience and money to burn while waiting

11 / 29

Our Approach

Constraint programming

Optimality*

Flexible model
Integration

Current status

Instruction selection - concepts / ideas
Instruction scheduling & register allocation - prototype
+ paper*

*Given enough patience and money to burn while waiting
*Constraint-based register allocation and instruction scheduling.

CP2012.
11 / 29

1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

12 / 29

Instruction Selection

Which DAG node do we cover by which

pattern?

13 / 29

Instruction Selection

14 / 29

Instruction Selection

1 Identify potential use of patterns in the DAG

14 / 29

Instruction Selection

1 Identify potential use of patterns in the DAG

2 Find optimal covering

14 / 29

Instruction Selection

1 Identify potential use of patterns in the DAG

Use existing O(n) techniques

2 Find optimal covering

14 / 29

Instruction Selection

1 Identify potential use of patterns in the DAG

Use existing O(n) techniques

2 Find optimal covering

Build and solve a constraint model

14 / 29

Instruction Selection

c4 rsp

+

ld

+

15 / 29

Instruction Selection

c4 rsp

+

ld

+

Variables:

15 / 29

Instruction Selection

c4 rsp

+

ld

+

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered

15 / 29

Instruction Selection

c4 rsp

+

ld

+

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

15 / 29

Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

15 / 29

Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:

15 / 29

Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D(c4) = P4,1 ⇐⇒ D(+) = P4,1

D(rsp) = P4,1 ⇐⇒ D(+) = P4,1

15 / 29

Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D(c4) = P4,1 ⇐⇒ D(+) = P4,1

D(rsp) = P4,1 ⇐⇒ D(+) = P4,1

D(+) = P4,1 ⇐⇒ D(BP4,1) = 1

15 / 29

Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D(c4) = P4,1 ⇐⇒ D(+) = P4,1

D(rsp) = P4,1 ⇐⇒ D(+) = P4,1

D(+) = P4,1 ⇐⇒ D(BP4,1) = 1

Objective:

15 / 29

Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D(c4) = P4,1 ⇐⇒ D(+) = P4,1

D(rsp) = P4,1 ⇐⇒ D(+) = P4,1

D(+) = P4,1 ⇐⇒ D(BP4,1) = 1

Objective:
min

∑
p,i∈Pp,i

cpBPp,i

15 / 29

Instruction Selection

c4 rsp

+

ld

+

P4,1 Pattern restrictions can simply be
added as constraints

15 / 29

1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

16 / 29

Instruction Scheduling

in which cycle is each instruction issued?

17 / 29

Instruction Scheduling

Classic scheduling model with:

precedences among instructions

18 / 29

Instruction Scheduling

Classic scheduling model with:

precedences among instructions

if i defines a value used by j :

i must be issued before j

18 / 29

Instruction Scheduling

Classic scheduling model with:

precedences among instructions

if i defines a value used by j :

i must be issued before j

resource constraints

18 / 29

Instruction Scheduling

Classic scheduling model with:

precedences among instructions

if i defines a value used by j :

i must be issued before j

resource constraints

if i and j use the same functional unit:

i and j must be issued in different cycles

18 / 29

1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

19 / 29

Register Allocation

Several problems

register assignment

20 / 29

Register Allocation

Several problems

register assignment

spilling

20 / 29

Register Allocation

Several problems

register assignment

spilling

coalescing

20 / 29

Register Allocation

Several problems

register assignment

spilling

coalescing

Extra challenge: whole function

20 / 29

Liveness and Interference

A temp is live while it might still be used:

t0 ← add . . .

...
...

jump t0

21 / 29

Liveness and Interference

A temp is live while it might still be used:

t0 ← add . . .

...
...

jump t0

21 / 29

Liveness and Interference

A temp is live while it might still be used:

t0 ← add . . .

...
...

jump t0

Two temps interfere if they are live simultaneously

21 / 29

Liveness and Interference

A temp is live while it might still be used:

t0 ← add . . .

...
...

jump t0

Two temps interfere if they are live simultaneously

non-interfering temps can share registers

21 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t0 ← add . . .

...
...

jump t0

22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t1
t1 ← add . . .

...
...

jump t?

22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t1
t1 ← add . . .

t2
...

...

jump t?

t1 ≡ t2

22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t1
t1 ← add . . .

t2
... t3

...

jump t?

t1 ≡ t2 t1 ≡ t3

22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t1
t1 ← add . . .

t2
... t3

...

t4
jump t4

t1 ≡ t2 t1 ≡ t3

t2 ≡ t4 t3 ≡ t4

22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t1
t1 ← add . . .

t2
... t3

...

t4
jump t4

t1 ≡ t2 t1 ≡ t3

t2 ≡ t4 t3 ≡ t4

Invariant: all temps are local
22 / 29

Linear Static Single Assignment Form (LSSA)

t0 is global: live in multiple blocks

How to model interference of global temps?

LSSA: decompose global temps into multiple local temps

t1
t1 ← add . . .

t2
... t3

...

t4
jump t4

t1 ≡ t2 t1 ≡ t3

t2 ≡ t4 t3 ≡ t4

Invariant: all temps are local → simple interference model
22 / 29

Register Assignment

to which register do we assign each

temporary?

23 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

→ based on (Pereira et al., 2008)

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

→ based on (Pereira et al., 2008)
cy
cl
e

0

1

2

3

r0 r1 r2 r3 . . .
..
.

..
. . . .

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

→ based on (Pereira et al., 2008)
cy
cl
e

0

1

2

3

r0 r1 r2 r3 . . .
..
.

..
. . . .

t0

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

→ based on (Pereira et al., 2008)
cy
cl
e

0

1

2

3

r0 r1 r2 r3 . . .
..
.

..
. . . .

t0

t1

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

→ based on (Pereira et al., 2008)
cy
cl
e

0

1

2

3

r0 r1 r2 r3 . . .
..
.

..
. . . .

t0

t1

t2

24 / 29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

temp live ranges rectangles

temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

→ based on (Pereira et al., 2008)
cy
cl
e

0

1

2

3

r0 r1 r2 r3 . . .
..
.

..
. . . .

t0

t1

t2

t3

24 / 29

Register Allocation: Other Problems

Spilling

consider memory locations as registers too

25 / 29

Register Allocation: Other Problems

Spilling

consider memory locations as registers too

optional copies to transfer temps

25 / 29

Register Allocation: Other Problems

Spilling

consider memory locations as registers too

optional copies to transfer temps

new variables to decide on copy implementation

special case of instruction selection

25 / 29

Register Allocation: Other Problems

Spilling

consider memory locations as registers too

optional copies to transfer temps

new variables to decide on copy implementation

special case of instruction selection

Coalescing

assign copy source and destination to same register

25 / 29

Register Allocation: Other Problems

Spilling

consider memory locations as registers too

optional copies to transfer temps

new variables to decide on copy implementation

special case of instruction selection

Coalescing

assign copy source and destination to same register

Global

decomposed temps are assigned to same register

25 / 29

1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

26 / 29

Overcome Register Allocation Limitations

...
t1 ← store . . .

Overcome Register Allocation Limitations

...
t1 ← store . . .

...

Overcome Register Allocation Limitations

...
t1 ← store . . .

...
t2 ← load t1

. . . ← neg t2

Overcome Register Allocation Limitations

...
t1 ← store . . .

...
t2 ← load t1

. . . ← neg t2
...

Overcome Register Allocation Limitations

...
t1 ← store . . .

...
t2 ← load t1

. . . ← neg t2
...

t3 ← load t1
. . . ← inc t3

...

27 / 29

Overcome Register Allocation Limitations

...
t1 ← store . . .

...
t2 ← load t1

. . . ← neg t2
...

t3 ← load t1
. . . ← inc {t2, t3}

...

27 / 29

Full Integration

Ultimate goal: fully unified code generation

28 / 29

Full Integration

Ultimate goal: fully unified code generation

Problem for scalability?

28 / 29

Full Integration

Ultimate goal: fully unified code generation

Problem for scalability? not necessarily!

28 / 29

Full Integration

Ultimate goal: fully unified code generation

Problem for scalability? not necessarily!

many dominant instruction selection decisions

28 / 29

Full Integration

Ultimate goal: fully unified code generation

Problem for scalability? not necessarily!

many dominant instruction selection decisions

why use mult and add when you can use mac?

28 / 29

Full Integration

Ultimate goal: fully unified code generation

Problem for scalability? not necessarily!

many dominant instruction selection decisions

why use mult and add when you can use mac?

most instruction selection decisions are local

28 / 29

Full Integration

Ultimate goal: fully unified code generation

Problem for scalability? not necessarily!

many dominant instruction selection decisions

why use mult and add when you can use mac?

most instruction selection decisions are local

Work in progress . . .

28 / 29

Scaling to Huge Functions

Inlining and other optimizations can blow function size

Not usual, but we cannot just ignore them!

29 / 29

Scaling to Huge Functions

Inlining and other optimizations can blow function size

Not usual, but we cannot just ignore them!

Possible strategies:

1 progressiveness

29 / 29

Scaling to Huge Functions

Inlining and other optimizations can blow function size

Not usual, but we cannot just ignore them!

Possible strategies:

1 progressiveness

2 local search, large neighborhood search, etc.

29 / 29

Scaling to Huge Functions

Inlining and other optimizations can blow function size

Not usual, but we cannot just ignore them!

Possible strategies:

1 progressiveness

2 local search, large neighborhood search, etc.

3 if everything else fails, resort to greedy algorithms

decent polynomial solutions always available

29 / 29

	Background & Motivation
	Our Approach
	Instruction Selection
	Instruction Scheduling
	Register Allocation
	Challenges and Future Work

