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m Target-independent program representation — Optimized
target-specific assembly code

m One of the oldest computer science problems
m Set of interdependent NP-complete problems

m Traditionally solved using non-optimal heuristics
m Phase ordering

29



Traditional compiler

/29



Traditional compiler

Source Assembly
program IR . IR code
——| Frontend Optimizer Backend ——




Traditional compiler

Backend
T T T Tt T Tt Assembly ~ ~ ~ T T T T T T T T Assembly T TTTTTT7 !
1
1 code code Assembly |
1R Instruction + temps. Instruction + temps. Register code
—> —

| selection scheduling allocation !




Intermediate representation (IR)

/29



Intermediate representation (IR)

[ ]

-

[ ]

Control flow graph
(CFG), per function

29



Intermediate representation (IR)

-

[ ]

Control flow graph
(CFG), per function

29



Intermediate representation (IR)

— QO @
= ]
— oWC
©

Control flow graph Expression tree, per block
(CFG), per function

29



Intermediate representation (IR)

-

[ ]

Control flow graph
(CFG), per function

&)
-
&
Directed acyclic graph
(DAG)

29



From DAGs to assembly code

/29



From DAGs to assembly code

/29



From DAGs to assembly code

m Select which CPU instructions to use

29



From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

29



From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

c=0 c=1 c=1
mvi r, ¢ add r3, rn, r

Py P P3

OO )
@ addi ry, rj, G 1d ryg, raddr
. A ;

29



From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

c=0 c=1 c=1
mvi r, ¢ add r3, rn, r

P1 P2 P3

OO i
addi ry, rj, G 1d ryg, raddr

P4 P5




From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

c=0 c=1 c=1
mvi r, ¢ add r3, rn, r

P1 P2 P3

OO i
addi ry, rj, G 1d ryg, raddr

P4 P5

addi tg, rsp, 4
- 1d t1, to
add t;, t1, t1

29



From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

/29



From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

m Schedule instructions

/29



From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

m Schedule instructions

m Assign temporaries to registers
(or spill to memory)

29



From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

m Schedule instructions

m Assign temporaries to registers
(or spill to memory)

addi rp, rsp, 4
1d rn, n

add rn, n, n

Requires 3 registers

29



addi ty, rep, 4
1d t1, t
add t,, t1, t1

addi rp, rsp, 4
1d rn, h
add rn, n, n

Requires 3 registers

From DAGs to assembly code

m Schedule instructions

m Assign temporaries to registers
(or spill to memory)

addi rp, rsp, 4
1d hh, h

add hh, hh, h

Requires only 1 register
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Our Approach

m Constraint programming
m Optimality”
m Flexible model
m Integration

m Current status
m Instruction selection - concepts / ideas
m Instruction scheduling & register allocation - prototype
+ paper*

*Given enough patience and money to burn while waiting
* Constraint-based register allocation and instruction scheduling.
CP2012.
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Instruction Selection

Identify potential use of patterns in the DAG
m Use existing O(n) techniques

Find optimal covering
m Build and solve a constraint model
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Instruction Selection

m Pattern restrictions can simply be
added as constraints
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Instruction Scheduling

m Classic scheduling model with:

m precedences among instructions
if / defines a value used by j:

i must be issued before j

m resource constraints
if i and j use the same functional unit:

i and j must be issued in different cycles
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Register Allocation

m Several problems

m register assignment
m spilling

m coalescing

m Extra challenge: whole function
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m A temp is live while it might still be used:

<—add ...

N\ /

Jjump

m Two temps interfere if they are live simultaneously
m non-interfering temps can share registers
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Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

t; «—add ...
t1|:|

L=t / t15f3\

1

b=t \t35t4/

u []
jump 4

m Invariant: all temps are local — simple interference model
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Register Assignment

to which register do we assign each
temporary?
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Register Allocation: Other Problems

m Spilling
m consider memory locations as registers too
m optional copies to transfer temps
m new variables to decide on copy implementation

m special case of instruction selection

m Coalescing
m assign copy source and destination to same register

m Global

m decomposed temps are assigned to same register
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Overcome Register Allocation Limitations

[y < store .

tr < load 13
. < negib

I3 < load t;
. < 1inc {tg, tg}
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Full Integration

m Ultimate goal: fully unified code generation
m Problem for scalability? not necessarily!

® many dominant instruction selection decisions
why use mult and add when you can use mac?

m most instruction selection decisions are local

m Work in progress . ..
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Scaling to Huge Functions

m Inlining and other optimizations can blow function size
m Not usual, but we cannot just ignore them!

m Possible strategies:

progressiveness

local search, large neighborhood search, etc.

if everything else fails, resort to greedy algorithms
m decent polynomial solutions always available
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