Constraint-Based Code Generation

Gabriel Hjort Blindell - KTH, SICS
Roberto Castaneda Lozano — SICS
Mats Carlsson — SICS
Frej Drejhammar — SICS
Christian Schulte — KTH, SICS

SICS

0SS 2013

Outline

Background & Motivation
Our Approach

Instruction Selection
Instruction Scheduling
Register Allocation

@ Challenges and Future Work

/29

Background & Motivation

/29

What is code generation?

/29

What is code generation?

m Target-independent program representation — Optimized
target-specific assembly code

29

What is code generation?

m Target-independent program representation — Optimized
target-specific assembly code

m One of the oldest computer science problems

29

What is code generation?

m Target-independent program representation — Optimized
target-specific assembly code

m One of the oldest computer science problems
m Set of interdependent NP-complete problems

What is code generation?

m Target-independent program representation — Optimized
target-specific assembly code

m One of the oldest computer science problems
m Set of interdependent NP-complete problems
m Traditionally solved using non-optimal heuristics

What is code generation?

m Target-independent program representation — Optimized
target-specific assembly code

m One of the oldest computer science problems
m Set of interdependent NP-complete problems

m Traditionally solved using non-optimal heuristics
m Phase ordering

29

Traditional compiler

/29

Traditional compiler

Source Assembly
program IR . IR code
——| Frontend Optimizer Backend ——

Traditional compiler

Backend
T T T Tt T Tt Assembly ~ ~ ~ T T T T T T T T Assembly T TTTTTT7 !
1
1 code code Assembly |
1R Instruction + temps. Instruction + temps. Register code
—> —

| selection scheduling allocation !

Intermediate representation (IR)

/29

Intermediate representation (IR)

[]

-

[]

Control flow graph
(CFG), per function

29

Intermediate representation (IR)

-

[]

Control flow graph
(CFG), per function

29

Intermediate representation (IR)

— QO @
=]
— oWC
©

Control flow graph Expression tree, per block
(CFG), per function

29

Intermediate representation (IR)

-

[]

Control flow graph
(CFG), per function

&)
-
&
Directed acyclic graph
(DAG)

29

From DAGs to assembly code

/29

From DAGs to assembly code

/29

From DAGs to assembly code

m Select which CPU instructions to use

29

From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

29

From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

c=0 c=1 c=1
mvi r, ¢ add r3, rn, r

Py P P3

OO)
@ addi ry, rj, G 1d ryg, raddr
. A ;

29

From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

c=0 c=1 c=1
mvi r, ¢ add r3, rn, r

P1 P2 P3

OO i
addi ry, rj, G 1d ryg, raddr

P4 P5

From DAGs to assembly code

m Select which CPU instructions to use
m Find covering with least cost

c=0 c=1 c=1
mvi r, ¢ add r3, rn, r

P1 P2 P3

OO i
addi ry, rj, G 1d ryg, raddr

P4 P5

addi tg, rsp, 4
- 1d t1, to
add t;, t1, t1

29

From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

/29

From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

m Schedule instructions

/29

From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

m Schedule instructions

m Assign temporaries to registers
(or spill to memory)

29

From DAGs to assembly code

addi ty, rep, 4
1d t1, t
add t,, t1, t1

m Schedule instructions

m Assign temporaries to registers
(or spill to memory)

addi rp, rsp, 4
1d rn, n

add rn, n, n

Requires 3 registers

29

addi ty, rep, 4
1d t1, t
add t,, t1, t1

addi rp, rsp, 4
1d rn, h
add rn, n, n

Requires 3 registers

From DAGs to assembly code

m Schedule instructions

m Assign temporaries to registers
(or spill to memory)

addi rp, rsp, 4
1d hh, h

add hh, hh, h

Requires only 1 register

29

Our Approach

10/29

Our Approach

11/29

Our Approach

m Constraint programming

11/29

Our Approach

m Constraint programming
m Optimality

11/29

Our Approach

m Constraint programming
m Optimality”

*Given enough patience and money to burn while waiting

11/29

Our Approach

m Constraint programming
m Optimality”
m Flexible model

*Given enough patience and money to burn while waiting

11/29

Our Approach

m Constraint programming
m Optimality”
m Flexible model
m Integration

*Given enough patience and money to burn while waiting

11/29

Our Approach

m Constraint programming
m Optimality”
m Flexible model
m Integration

m Current status

*Given enough patience and money to burn while waiting

11/29

Our Approach

m Constraint programming
m Optimality”
m Flexible model
m Integration

m Current status

m Instruction selection - concepts / ideas

*Given enough patience and money to burn while waiting

11/29

Our Approach

m Constraint programming
m Optimality”
m Flexible model
m Integration

m Current status
m Instruction selection - concepts / ideas
m Instruction scheduling & register allocation - prototype
+ paper*

*Given enough patience and money to burn while waiting
* Constraint-based register allocation and instruction scheduling.
CP2012.

11/29

Instruction Selection

12/29

Instruction Selection

Which DAG node do we cover by which
pattern?

13/29

Instruction Selection

14/29

Instruction Selection

Identify potential use of patterns in the DAG

14 /29

Instruction Selection

Identify potential use of patterns in the DAG

Find optimal covering

14 /29

Instruction Selection

Identify potential use of patterns in the DAG
m Use existing O(n) techniques
Find optimal covering

14 /29

Instruction Selection

Identify potential use of patterns in the DAG
m Use existing O(n) techniques

Find optimal covering
m Build and solve a constraint model

14 /29

Instruction Selection

15/29

Instruction Selection

m Variables:

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which

e @ pattern instance is it covered

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which
e @ pattern instance is it covered
m A Boolean variable for each
pattern instance to decide
whether it is used

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which
pattern instance is it covered

m A Boolean variable for each
pattern instance to decide
whether it is used

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which
pattern instance is it covered

m A Boolean variable for each
pattern instance to decide
whether it is used

m Constraints:

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which
pattern instance is it covered

m A Boolean variable for each
pattern instance to decide
whether it is used

m Constraints:

D() = P4’1 < D(@) = P471
D(()) = Pay <= D((+)) = Pu

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which
pattern instance is it covered

m A Boolean variable for each
pattern instance to decide
whether it is used

m Constraints:

D() = P471 < D(@) = P471
D(()) = Pay <= D((+)) = Pu

D(@) = 'D4,1 — D(BP4,1) =1

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which
pattern instance is it covered

m A Boolean variable for each
pattern instance to decide
whether it is used

m Constraints:

D((«+)) = Pay <= D((+)) = Pas

D(()) = Pay <= D((+)) = Pu

D((+)) = Pay <= D(Bp,,) =1
m Objective:

15/29

Instruction Selection

m Variables:

m One integer variable for each
DAG node to decide by which
pattern instance is it covered

m A Boolean variable for each
pattern instance to decide
whether it is used

m Constraints:

D((«+)) = Pay <= D((+)) = Pas

D(()) = Pay <= D((+)) = Pu

D((+)) = Pay <= D(Bp,,) =1
m Objective:

15/29

Instruction Selection

m Pattern restrictions can simply be
added as constraints

15/29

Instruction Scheduling

16 /29

Instruction Scheduling

in which cycle is each instruction issued?

17/29

Instruction Scheduling

m Classic scheduling model with:

m precedences among instructions

18 /29

Instruction Scheduling

m Classic scheduling model with:

m precedences among instructions
if / defines a value used by j:

i must be issued before j

18 /29

Instruction Scheduling

m Classic scheduling model with:

m precedences among instructions
if / defines a value used by j:

i must be issued before j

m resource constraints

18 /29

Instruction Scheduling

m Classic scheduling model with:

m precedences among instructions
if / defines a value used by j:

i must be issued before j

m resource constraints
if i and j use the same functional unit:

i and j must be issued in different cycles

18 /29

Register Allocation

19/29

Register Allocation

m Several problems

m register assignment

20/29

Register Allocation

m Several problems

m register assignment

m spilling

20/29

Register Allocation

m Several problems

m register assignment
m spilling

m coalescing

20/29

Register Allocation

m Several problems

m register assignment
m spilling

m coalescing

m Extra challenge: whole function

20/29

Liveness and Interference

m A temp is live while it might still be used:

<—add ...

Jjump

21/29

Liveness and Interference

m A temp is live while it might still be used:

<—add ...

Jjump

21/29

Liveness and Interference

m A temp is live while it might still be used:

<—add ...

N\ /

Jjump

m Two temps interfere if they are live simultaneously

21/29

Liveness and Interference

m A temp is live while it might still be used:

<—add ...

N\ /

Jjump

m Two temps interfere if they are live simultaneously
m non-interfering temps can share registers

21/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

tg < add ...

Jjump to

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks

m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

.|

t; «—add ...

jump t;

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

t; «—add ...
t1|:|

aze /o N\

|

jump t;

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

t; «—add ...
t1|:|

|:|t1t2 / t1t3|j‘
/

jump t;

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

t; «—add ...
t1|:|

L=t / t15t3\

1

b=t \t35t4/

t, |:|
Jump ts

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

t; «—add ...
t1|:|

L=t / t15t3\

1

b=t \t35t4/

u []
jump 4

m Invariant: all temps are local

22/29

Linear Static Single Assignment Form (LSSA)

m ty is global: live in multiple blocks
m How to model interference of global temps?
m LSSA: decompose global temps into multiple local temps

t; «—add ...
t1|:|

L=t / t15f3\

1

b=t \t35t4/

u []
jump 4

m Invariant: all temps are local — simple interference model

22/29

Register Assignment

to which register do we assign each
temporary?

23/29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

24 /29

Register Assignment as Rectangle Packing

Register Assignment
temp live ranges
temp size

interfering temps cannot share registers

Rectangle Packing
rectangles
rectangle width

rectangles cannot overlap

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

— based on (Pereira et al., 2008)

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

— based on (Pereira et al., 2008)

rOrl r2r3---

cycle
N

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

— based on (Pereira et al., 2008)

rOrl r2r3---

to

cycle
N

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

— based on (Pereira et al., 2008)

rOrl r2r3---

to

cycle
N

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

— based on (Pereira et al., 2008)

rOrl r2r3---

to

cycle
N

[5)

24 /29

Register Assignment as Rectangle Packing

Register Assignment Rectangle Packing
temp live ranges rectangles
temp size rectangle width

interfering temps cannot share registers rectangles cannot overlap

— based on (Pereira et al., 2008)

rOrl r2r3---

to

cycle
N

[5)

24 /29

Register Allocation: Other Problems

m Spilling
m consider memory locations as registers too

25 /29

Register Allocation: Other Problems

m Spilling
m consider memory locations as registers too

m optional copies to transfer temps

25 /29

Register Allocation: Other Problems

m Spilling
m consider memory locations as registers too
m optional copies to transfer temps

m new variables to decide on copy implementation
m special case of instruction selection

25 /29

Register Allocation: Other Problems

m Spilling
m consider memory locations as registers too
m optional copies to transfer temps
m new variables to decide on copy implementation

m special case of instruction selection

m Coalescing
m assign copy source and destination to same register

25 /29

Register Allocation: Other Problems

m Spilling
m consider memory locations as registers too
m optional copies to transfer temps
m new variables to decide on copy implementation

m special case of instruction selection

m Coalescing
m assign copy source and destination to same register

m Global

m decomposed temps are assigned to same register

25 /29

@ Challenges and Future Work

26 /29

Overcome Register Allocation Limitations

[y < store ...

Overcome Register Allocation Limitations

[y < store ...

Overcome Register Allocation Limitations

[y < store ...

tr < load 1y
. < neg i

Overcome Register Allocation Limitations

[y < store ...

tr < load 1y
. < neg i

Overcome Register Allocation Limitations

[y < store ...

tr < load 1y
. < negtib

f3 <— load 13
. < 1nc 13

27/29

Overcome Register Allocation Limitations

[y < store .

tr < load 13
. < negib

I3 < load t;
. < 1inc {tg, tg}

27/29

Full Integration

m Ultimate goal: fully unified code generation

28 /29

Full Integration

m Ultimate goal: fully unified code generation

m Problem for scalability?

28 /29

Full Integration

m Ultimate goal: fully unified code generation

m Problem for scalability? not necessarily!

28 /29

Full Integration

m Ultimate goal: fully unified code generation
m Problem for scalability? not necessarily!

® many dominant instruction selection decisions

28 /29

Full Integration

m Ultimate goal: fully unified code generation
m Problem for scalability? not necessarily!

® many dominant instruction selection decisions

why use mult and add when you can use mac?

28 /29

Full Integration

m Ultimate goal: fully unified code generation
m Problem for scalability? not necessarily!

® many dominant instruction selection decisions
why use mult and add when you can use mac?

m most instruction selection decisions are local

28 /29

Full Integration

m Ultimate goal: fully unified code generation
m Problem for scalability? not necessarily!

® many dominant instruction selection decisions
why use mult and add when you can use mac?

m most instruction selection decisions are local

m Work in progress . ..

28 /29

Scaling to Huge Functions

m Inlining and other optimizations can blow function size

m Not usual, but we cannot just ignore them!

29 /29

Scaling to Huge Functions

m Inlining and other optimizations can blow function size
m Not usual, but we cannot just ignore them!

m Possible strategies:

progressiveness

29 /29

Scaling to Huge Functions

m Inlining and other optimizations can blow function size
m Not usual, but we cannot just ignore them!

m Possible strategies:

progressiveness

local search, large neighborhood search, etc.

29 /29

Scaling to Huge Functions

m Inlining and other optimizations can blow function size
m Not usual, but we cannot just ignore them!

m Possible strategies:

progressiveness

local search, large neighborhood search, etc.

if everything else fails, resort to greedy algorithms
m decent polynomial solutions always available

29 /29

	Background & Motivation
	Our Approach
	Instruction Selection
	Instruction Scheduling
	Register Allocation
	Challenges and Future Work

