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Set of interdependent NP-complete problems
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Our Approach

Constraint programming

Optimality*

Flexible model
Integration

Current status

Instruction selection - concepts / ideas
Instruction scheduling & register allocation - prototype
+ paper*

*Given enough patience and money to burn while waiting
*Constraint-based register allocation and instruction scheduling.

CP2012.
11 / 29



1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

12 / 29



Instruction Selection

Which DAG node do we cover by which

pattern?

13 / 29



Instruction Selection

14 / 29



Instruction Selection

1 Identify potential use of patterns in the DAG

14 / 29



Instruction Selection

1 Identify potential use of patterns in the DAG

2 Find optimal covering

14 / 29



Instruction Selection

1 Identify potential use of patterns in the DAG

Use existing O(n) techniques

2 Find optimal covering

14 / 29



Instruction Selection

1 Identify potential use of patterns in the DAG

Use existing O(n) techniques

2 Find optimal covering

Build and solve a constraint model

14 / 29



Instruction Selection

c4 rsp

+

ld

+

15 / 29



Instruction Selection

c4 rsp

+

ld

+

Variables:

15 / 29



Instruction Selection

c4 rsp

+

ld

+

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered

15 / 29



Instruction Selection

c4 rsp

+

ld

+

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

15 / 29



Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

15 / 29



Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:

15 / 29



Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D( c4 ) = P4,1 ⇐⇒ D( + ) = P4,1

D( rsp ) = P4,1 ⇐⇒ D( + ) = P4,1

15 / 29



Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D( c4 ) = P4,1 ⇐⇒ D( + ) = P4,1

D( rsp ) = P4,1 ⇐⇒ D( + ) = P4,1

D( + ) = P4,1 ⇐⇒ D(BP4,1) = 1

15 / 29



Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D( c4 ) = P4,1 ⇐⇒ D( + ) = P4,1

D( rsp ) = P4,1 ⇐⇒ D( + ) = P4,1

D( + ) = P4,1 ⇐⇒ D(BP4,1) = 1

Objective:

15 / 29



Instruction Selection

c4 rsp

+

ld

+

P4,1

Variables:

One integer variable for each
DAG node to decide by which
pattern instance is it covered
A Boolean variable for each
pattern instance to decide
whether it is used

Constraints:
D( c4 ) = P4,1 ⇐⇒ D( + ) = P4,1

D( rsp ) = P4,1 ⇐⇒ D( + ) = P4,1

D( + ) = P4,1 ⇐⇒ D(BP4,1) = 1

Objective:
min

∑
p,i∈Pp,i

cpBPp,i

15 / 29



Instruction Selection

c4 rsp

+

ld

+

P4,1 Pattern restrictions can simply be
added as constraints

15 / 29



1 Background & Motivation

2 Our Approach

3 Instruction Selection

4 Instruction Scheduling

5 Register Allocation

6 Challenges and Future Work

16 / 29



Instruction Scheduling

in which cycle is each instruction issued?

17 / 29



Instruction Scheduling

Classic scheduling model with:

precedences among instructions

18 / 29



Instruction Scheduling

Classic scheduling model with:

precedences among instructions

if i defines a value used by j :

i must be issued before j

18 / 29



Instruction Scheduling

Classic scheduling model with:

precedences among instructions

if i defines a value used by j :

i must be issued before j

resource constraints

18 / 29



Instruction Scheduling

Classic scheduling model with:

precedences among instructions

if i defines a value used by j :

i must be issued before j

resource constraints

if i and j use the same functional unit:

i and j must be issued in different cycles
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Spilling

consider memory locations as registers too

optional copies to transfer temps

new variables to decide on copy implementation

special case of instruction selection

Coalescing

assign copy source and destination to same register

Global

decomposed temps are assigned to same register
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Overcome Register Allocation Limitations

...
t1 ← store . . .

...
t2 ← load t1

. . . ← neg t2
...

t3 ← load t1
. . . ← inc {t2, t3}

...
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Ultimate goal: fully unified code generation

Problem for scalability? not necessarily!

many dominant instruction selection decisions

why use mult and add when you can use mac?

most instruction selection decisions are local

Work in progress . . .
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Inlining and other optimizations can blow function size

Not usual, but we cannot just ignore them!

Possible strategies:

1 progressiveness

2 local search, large neighborhood search, etc.

3 if everything else fails, resort to greedy algorithms

decent polynomial solutions always available
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